
Economy Informatics, 1-4/2007  
 

91

Reducing Software Projects Duration Using C# 
 

Marius VETRICI 
Economic Informatics Department - Academy of Economic Studies 

mariusvetrici@softmentor.ro
 

This paper analyzes the impact of using the C# language on project development du-
ration. A set of duration estimation techniques are explained, the difficulties of estimating 
software project duration are enumerated and the factors that negatively impact the duration 
of a software project are analyzed. The technical advantages of C# language are presented as 
factors that reduce project complexity and duration. 
JEL classification: l86 computer software, o22 project analysis 
Keywords: Project duration, estimation models, influence factors. 
 
 

Introduction 
Se

years 
veral studies made over the past ten 
revealed the dramatic reality of the 

software projects: one out of the four soft-
ware projects is considered successful; the 
effective projects duration is 222% over the 
schedule and the resources are 189% higher 
then budgeted [1], [2], [3], [4]. These stag-
gering numbers put actual and potential in-
vestors into great difficulties because these 
results translate into great capital losses and 
high risks for further investments into soft-
ware. 
The Standish Group’s survey gives us a use-
ful insight into the factors that mostly chal-
lenge a software project [4]:  

 
Table 1: Project Challenge Factors 

No. Project Challenge Factors % of re-
sponses 

1 Lack of User Input 12.8% 
2 Incomplete Requirements 

& Specifications 
12.3% 

3 Changing Requirements & 
Specifications 

11.8% 

4 Lack of Executive Support 7.5% 
5 Technology Incompetence 7.0% 
6 Lack of Resources 6.4% 
7 Unrealistic Expectations 5.9% 
8 Unclear Objectives 5.3% 
9 Unrealistic Time Frames 4.3% 
10 New Technology 3.7% 
 Other 23.0% 
 
This paper addresses the fifth challenge fac-

tor “Technology Incompetence” as a possible 
cause for project delay. The more complex a 
software development technology, the greater 
the technology incompetence and the fewer 
skillful software developers are using that 
technology. The reverse is also true: the eas-
ier a technology is (considering a constant 
productivity lever), the greater technology 
competence and the fewer challenged pro-
jects. 
 
2.  Project duration estimation 
2.1 Definitions 
A project is “a temporary endeavor under-
taken to create a unique product, service, or 
result” [5]. A software development project 
is a temporary endeavour undertaken to cre-
ate a unique piece of software. High quality 
software development projects deliver the re-
quired product within scope, on time and 
within budget. It is the project manager’s 
duty to skilfully balance the competing de-
mands for project quality, project duration 
and cost of resources in order to be able to 
deliver the software as planned.  
Like any other type of project, software de-
velopment projects need: 
• clearly defined requirements and scope 
• established achievable objectives 
• controlled resource allocation 
• good effort and schedule management 
The expectations of stakeholders are focused 
on the software to be delivered, on the 
budged consumption and on the project dura-
tion. 

1 

mailto:mariusvetrici@softmentor.ro


Economy Informatics, 1-4/2007 
 
92 

The duration of a project is the time elapsed 
between the project start and the project de-
livery date, when the software is delivered to 
the customer. The project duration is an es-
sential indicator that should be well esti-
mated, agreed upon with the stakeholders and 
thoroughly monitored, up to the project com-
pletion. 
2.2 The importance of estimating project du-
ration 
Project duration and size reflect the man-
ager’s own understanding of the require-
ments. It is not possible to correctly size and 
estimate duration for a project that is not 
completely understood. Further, project dura-
tion provides an important check for scope 
creep throughout the project. Failing to pay 
attention to project duration one could agree 
to add new functionality without appropri-
ately updating project size and effort needed. 
2.3 The difficulties of estimating software 
project duration 
There are several reasons that make software 
project duration estimation a difficult prob-
lem. First of all, the very essence of software 
building process makes it difficult to meas-
ure. It is a tough endeavor to try to measure 
“how much” software is there in a software 
project because the software is invisible and 
unvisualizable [6]. This especially difficult if 
we try to make such forecasts before a de-
tailed software design.  
The software is pure thought-stuff, infinitely 
malleable [6]. Unlike cars and buildings, the 
software is constantly subject to pressures for 
change because the costs of modifications are 
difficult to understand.  
Many of the classic problems of developing 
software products derive from this essential 
complexity and its nonlinear increases with 
size. From the complexity comes the diffi-
culty of communication among team mem-
bers, which leads to product flaws, cost over-
runs and schedule delays. From the complex-
ity comes the difficulty of enumerating, 
much less understanding, all the possible 
states of the program, and from that comes 
the unreliability [7]. 
2.4 Duration estimation techniques 
The grand majority of techniques for project 

duration estimation can be found either in 
bottom-up or top-down category. The differ-
ence between the two comes from the ap-
proach used to estimate project duration. The 
techniques in the first category start at the 
task-level view of the project and aggregate 
the work to be performed on higher levels, up 
to the project as a whole. The top-down way 
offers duration predictions based on proper-
ties of the work-product, the project team, 
and the project environment, figure 1. 
 

 
Fig.1. Bottom-up vs. top-down techniques 

 

The bottom-up techniques start with develop-
ing a work breakdown structure of the work 
and then continue with task identification and 
task duration estimation. Every task should 
be simple enough so as one could easily an-
swer the question regarding the task duration 
three parameter estimates: 
• best duration estimation 
• most likely 
• worst duration 
Also for every task one should know: 
• what's involved in getting started 
• how will resources be allocated 
• what exactly are the conditions to be met in 
order the project to be considered done. 
The next step is identifying the predecessor-
successor relationships and the critical path 
through the activity graph. 
In order to forecast the completion time, 
three different approaches can be used. 
a) The simple approach consists in adding-
up the most likely estimates for each task on 
the critical path. It is not the best method, but 
it is the simplest one. 
b) The second approach means to calculate 
the expected task duration ED as a weighted 
mean of the three given estimations using 
PERT equation: 

6
*4 WDMDBDED ++

=          (1) 



Economy Informatics, 1-4/2007  
 

93

where: 
BD – best duration estimation; this is the 
most optimistic expectation, the best case 
scenario that assumes no influence is going 
to negatively impact the project duration; 
MD – most likely; the duration of activity 
given the resources, their productivity and 
realistic expectations of availability; 
WD – worst duration; the duration of activity  
based on a worse case scenario of what is de-
scribed in most likely estimate. 
c) The third approach relies on a Monte 
Carlo simulation over the task estimation 
data. The result will be a probabilistic distri-
bution of the project duration. 
The top-down techniques use instead some 
high level attributes of the project (related to 
its complexity, functionality or size) and of 
the organization capability to deliver the pro-
ject.  
Top-down estimation begins with an assess-
ment of the size of the work-product being 
planned. This idea comes from the construc-
tion projects, where the project-manager 
wouldn't imagine committing to a deadline 
without establishing and tracking some good 
size estimates, like the number of square feet, 
number of windows, doors, etc. to be de-
signed and built. 
Up to date there are four software project siz-
ing legacy methods. See table 1 [11]: 
 

Table 1. Project sizing techniques pros 
and cons  

Sizing 
Method 

Pros Cons 

Lines of 
Codes 

Easy to measure 
in many devel-
opment envi-
ronments (after 
there is code). 

Cannot be done 
before there are 
lines of code. 

Function 
Points 

Can be meas-
ured during re-
quirements 
stage. 

Requires some 
training, calibra-
tion and perhaps 
tailoring to spe-
cific application 
domains. 

Use-Case 
Counting 

Can be meas-
ured during re-
quirements 

New method. 
Small experi-
ence base at this 

stage. time. 
Web Ap-
plication 
Proxies 

Easy to count 
starting with 
early web appli-
cation proto-
types. 

New method. 
Requires devel-
opment of 
counting rules 
and calibration 
for specific ap-
plication types. 

 
The next step in top-down estimation is to 
use a project duration estimation model.  
Lawrence Putnam proposed a widely used 
model for project duration estimation using 
data on size, effort, and historic duration for 
thousands of other software projects. The 
model builds up the organization's delivery 
capability index using PP - Productivity Pa-
rameter and links it to size, effort and dura-
tion dynamics. 

3/43/1 *)( DE
PSPP

β

=        (2) 

where: 
PP – Putnam’s productivity index. This item  

shows the organization’s project deliv-
ery capability; 

PS – project size, counted using one of the  
above sizing methods; 

E – effort (in man-years). The work needed 
in  

order to fulfill the project; 
D – the project duration (years). 
The following things are notable in regard to 
this model: 
a) an organization with higher PP can de-
liver more size with less effort and in shorter 
duration than one with a lower PP; 
b) the 1/3 and 4/3 exponents in equation 2 
express the non-linearity in effort-duration 
relationship. 
2.5 Choosing a project duration estimation 
technique 
Both top-down and bottom-up approaches 
proved to be good at estimating project dura-
tion. A good software project manager will 
probably use both methods, plus his own es-
timation, based on priori experience. Bottom-
up estimates use work-breakdown structure, 
critical path method and task estimates; they 
provide crucial details regarding the duration 



Economy Informatics, 1-4/2007 
 
94 

of smaller project parts and they rollup to a 
global duration and effort estimation. Top-
down estimates rely on history of other real 
projects. One's cumulative experience in 
similar projects can provide estimates that 
deserve some consideration in balance with 
the bottom-up and top-down views. 
 
3. C# language for software projects 
3.1 Language overview 
C# is an elegant and type-safe object-
oriented language that enables developers to 
build a wide range of secure and robust ap-
plications that run on the .NET Framework. 
C# can be successfully used to create tradi-
tional Windows client applications, XML 
Web services, distributed components, client-
server applications, database applications, 
and much, much more [13], [14]. 
C# programs run on the .NET Framework, an 
integral component of Windows that includes 
a virtual execution system called the Com-
mon Language Runtime - CLR and a unified 
set of class libraries. The CLR is Microsoft's 
commercial implementation of the Common 
Language Infrastructure - CLI, an interna-
tional standard that is the basis for creating 
execution and development environments in 
which languages and libraries work together 
seamlessly. See figure 1. 
In addition to these basic object-oriented 
principles, C# facilitates the development of 
software components through several innova-
tive language constructs, including:  
• encapsulated method signatures called 
delegates, which enable type-safe event noti-
fications. 
• properties, which serve as accessors for 
private member variables.  
• attributes, which provide declarative meta-
data about types at run time.  
• inline XML documentation comments.  
 
3.2 C# language evolution 
C# language evolved from the success and 
failures of earlier languages like C, C++ and 
Java. Developers who know any of these 
languages are typically able to begin working 
productively in C# within a very short time. 
C# syntax simplifies many of the complexi-

ties of C++ while providing powerful fea-
tures such as nullable value types, enumera-
tions, delegates, anonymous methods and di-
rect memory access, which are not found in 
Java. C# also supports generic methods and 
types, which provide increased type safety 
and performance, and iterators, which enable 
implementers of collection classes to define 
custom iteration behaviors that are simple to 
use by client code [6], [8]. 
•  
 

 
Fig.2. How a C# program runs on .NET 

Framework 
 
 
3.3 C# language advantages for reducing pro-
ject durations 
The C# build process is simple compared to 
C and C++ and more flexible than in Java. 
There are no separate header files, and no re-
quirement that methods and types be de-
clared in a particular order. A C# source file 
may define any number of classes, structs, in-
terfaces, and events. 
Language interoperability is a key feature of 
the .NET Framework. Because the IL code 
produced by the C# compiler conforms to the 
Common Type Specification  - CTS, IL code 
generated from C# can interact with code that 



Economy Informatics, 1-4/2007  
 

95

was generated from the .NET versions of 
Visual Basic, Visual C++, Visual J#, or any 
of more than 20 other CTS-compliant lan-
guages. A single assembly may contain mul-
tiple modules written in different .NET lan-
guages, and the types can reference each 
other just as if they were written in the same 
language. 
In addition to the run time services, the .NET 
Framework also includes an extensive library 
of over 4000 classes organized into name-
spaces that provide a wide variety of useful 
functionality for everything from file input 
and output to string manipulation to XML 
parsing, to Windows Forms controls. 
 
4.  Conclusion 
This paper outlines the special nature of 
software projects together with the difficul-
ties of software project duration estimation. 
Two large groups of duration estimation 
techniques are presented. Then we count the 
advantages of using C# language for reduc-
ing software project complexity and duration. 
 
References 
[1] *** - Supply Chain Management soft-
ware implementation failure survey, Bear 
Stearns 2002. 
[2] *** - ERP Software Implementation Suc-
cess Rates, Robbins-Gioia 2001. 
[3] *** - ERP Software Implementation Suc-
cess Rates, Conference Board 2001. 
[4] *** - The Chaos Report of IT Project 
Failure, Standish Group 1995. 
[5] *** - A Guide to Project Management 
Body of Knowledge Third Edition, Project 
Management Institute, 2003 
[6] Frederick P. Brooks, Jr., Essence and Ac-
cidents of Software Engineering, Computer 
Magazine, April issue 1987. 
[7] Steve McConnel, Rapid Development, 
Microsoft Press, 1996 
[8] PeopleWare. Productive Projects and 
Teams, Tom DeMarco, Timothy Lister, Dor-
set House Publishing Company 1999. 
[9] The Mythical Man-Month: Essays on 
Software Engineering, 20th Anniversary Edi-
tion, Addison-Wesley Professional, 1995 
[10] I. Ivan, A. Vişoiu, Bază de modele 

economice,Bucharest, Editura ASE, 2005. 
[11] David L. Hallowell , Software Project 
Management Meets Six Sigma, 
http://software.isixsigma.com 
[12] Putnam L. H., Five core metrics: the in-
telligence behind successful software man-
agement, Dorset House Publishing 2003. 
[13] Visual C#, Microsoft Visual Studio 2005 
Documentation, Microsoft Corporation, 2005  
[14] Andrew Troelsen, Pro C# with .NET 
3.0, Special Edition (Pro), Apress Publish-
ing, 2007 
[15] Inside C#, Second Edition, Microsoft 
Press, 2001 
[16] Steve McConnell, Code Complete, Sec-
ond Edition,  Microsoft Press, 2004 
 
 
 


	 
	1
	Introduction

