
Economy Informatics, 1-4/2004 66

Parallel Merging

Assistant Lecturer Felician ALECU
Economy Informatics Department, A.S.E. Bucharest

The main goal of this paper is to present a highly parallel program used to merge any two
sorted lists into a single one ordered by the same rule. The program has to be as efficient as
possible in order to maximize the speedup and to minimize the parallel execution time.
Keywords: parallel algorithms, merging, sorting, binary search, parallelization techniques.

asically, a merging algorithm takes two
sorted sequences as inputs and combines

them into a single sorted sequence. Such an
algorithm generally runs over multiple sorted
lists in a time proportional to the sum of the
lengths of the lists.
The classical merging algorithm outputs, at
each step, the data item having the lowest
key. Given some sorted lists, it produces a

sorted list containing all the elements in any
of the input lists, and it does so in a time pro-
portional to the sum of the lengths of the in-
put lists. We can say with no doubt that the
time complexity of the sequential version of
the merging algorithm is equal with O(n).
The Pascal source code of this version of se-
quential merging algorithm is presented be-
low (Alg.1).

procedure SequentialMerging
(var x:int_array;nx:integer;
 var y:int_array;ny:integer;
 var z:int_array);
var crt_pos_x:integer;
 crt_pos_y:integer;
 crt_pos_z:integer;
 i:integer;
begin crt_pos_x:=1;
 crt_pos_y:=1;
 crt_pos_z:=1;
 while (crt_pos_x<=nx) and (crt_pos_y<=ny) do
 begin if x[crt_pos_x]<y[crt_pos_y] then
 begin z[crt_pos_z]:=x[crt_pos_x];
 crt_pos_x:=crt_pos_x+1;
 crt_pos_z:=crt_pos_z+1;
 end
 else
 begin z[crt_pos_z]:=y[crt_pos_y];
 crt_pos_y:=crt_pos_y+1;
 crt_pos_z:=crt_pos_z+1;
 end;
 end;
 if crt_pos_x<=nx then
 begin for i:=crt_pos_x to nx do
 begin z[crt_pos_z]:=x[i];
 crt_pos_z:=crt_pos_z+1;
 end;
 end
 else
 begin for i:=crt_pos_y to ny do
 begin z[crt_pos_z]:=y[i];
 crt_pos_z:=crt_pos_z+1;
 end;
 end;
end;

Alg.1. Sequential merging

Analyzing the algorithm we can observe that
merging sorted lists is a very sequential ac-
tivity with little opportunities for parallelism.
The algorithm compares pairs of two ele-
ments, the minimum value is written in the

final array and the corresponding indexes are
incremented. There is no room for parallel-
ism and concurrency.
As like in the Rank Sort algorithm, we can
notice that the final position of an element

B

Economy Informatics, 1-4/2004 67

X[i] can be directly computed based on its
rank that can be obtained using the current
position i and the corresponding position j in
the second list Y. In such a way, the final po-
sition of the element will be Z[i+j-1].
This observation can be easily justified in the
following way: the first i-1 items from the
list X are less than X[i] and must appear be-
fore this element in the final sorted list Z.
Also, the first j-1 items from the second list
are less than X[i] and must also appear be-
fore our element in the final list. So, by total,
there are i-1+j-1 items that must appear prior
to X[i] in the Z list. This is why the rank of
the element X[i] will be equal with i+j-1 and
the element will be placed directly into posi-
tion Z[i+j-1]. The same observation can be
applied over the elements of the second list,
Y. At the end, for every item from the initial
lists we will obtain the rank that will be used
to put in place the element at the right posi-
tion.
Due to the fact the lists are already sorted,
the binary search can be used to compute the
corresponding position of the element in the

other list.
We still have an opened issue regarding the
duplicate items in the two lists. Such ele-
ments will produce the same value of rank
and therefore the final list will not be com-
plete. To avoid such a situation we need to
create an asymmetry in the way in which the
elements of the two lists are processed. When
performing the binary search of list Y to find
the location of X[i], all the elements that are
equal with X[i] will be treated as if they were
greater. In the same way, when the binary
search of list X for Y[k] is performed, the
elements equal with Y[k] will be managed as
if they were lower. This asymmetry will pre-
vent the collision between the equal items
from the two initial lists.
The source code of the procedure that per-
forms the rank computation of a given ele-
ment using the binary search is presented be-
low (Alg.2). The PutInPlace routine has a
complexity that is equal with the complexity
of binary search operation, O(log n). The
source parameter is used to generate the
asymmetry.

procedure PutInPlace
(value:integer;pos:integer;
 x:int_array;n:integer;
 var z:int_array;source:integer);
var start_pos:integer;
 end_pos:integer;
 crt_pos:integer;
begin start_pos:=1;
 end_pos:=n;

 while (end_pos-start_pos>1) do
 begin crt_pos:=(start_pos+end_pos) div 2;
 if value<x[crt_pos] then end_pos:=crt_pos
 else if value>x[crt_pos] then start_pos:=crt_pos
 else if source=1 then start_pos:=crt_pos
 else end_pos:=crt_pos;
 end;
 if value>x[end_pos] then crt_pos:=end_pos+1
 else if value<x[start_pos] then crt_pos:=start_pos
 else crt_pos:=end_pos;
 z[pos+crt_pos-1]:=value;
end;

Alg.2. The PutInPlace procedure

The sequential version of the merging algo-
rithm based on rank computation is presented
below (Alg.3). The PutInPlace procedure is
executed repeatedly by n times, where n is
the sum of the lengths of the input lists. This
is why the time complexity of this algorithm
is equal with O(n log n), higher than the
value obtained for the previous version.
This rank based merging algorithm can be

easier parallelized because the rank of ele-
ments can be concurrently computed on the
processors from a parallel configuration.
Every processor will calculate independently
one or more ranks, depending on the number
of processors from the parallel system.
The parallel version of the merging algorithm
is presented below (Alg.4). The source code
was written using the Multi-Pascal language.

Economy Informatics, 1-4/2004 68

for a multiprocessor parallel architecture

procedure SequentialMerging
(x:int_array;nx:integer;
 y:int_array;ny:integer;
 var z:int_array);
var i:integer;
begin for i:=1 to nx do
 PutInPlace(x[i],i,y,ny,z,1);
 for i:=1 to ny do
 PutInPlace(y[i],i,x,nx,z,2);
end;

Alg.3. Sequential merging based on rank computation

This version is obtained by running in paral-
lel the successive calls of the PutInPlace
procedure. Due to the fact that all the loops

are executed in parallel, the time complexity
of the algorithm is equal with O(log n), much
better compared with the sequential version.

procedure Merging_Parallel
(x:int_array;nx:integer;
 y:int_array;ny:integer;
 var z:int_array);
var i:integer;
begin forall i:=1 to nx do
 PutInPlace(x[i],i,y,ny,z,1);
 forall i:=1 to ny do
 PutInPlace(y[i],i,x,nx,z,2);
end;

Alg.4. Sequential merging

The main reason of parallelization a sequen-
tial program is to run the program faster. The
first criterion to be considered when evaluat-
ing the performance of a parallel program is
the speedup used to express how many times
the parallel program runs faster than the se-
quential one, where both programs are solv-
ing the same problem. If the parallel program
is executed on a computer with p processors,
the highest value that can be obtained for the
speedup is equal with the number of proces-
sors from the system. The maximum speedup
value could be achieved in an ideal multi-
processor system where there are no commu-
nication costs and the workload of processors
is balanced.
If the Ts is the execution time of the sequen-
tial merging algorithm and Tp is the running
time of the parallel version, the speedup can
be computed according with the following
formula:









===

n
nO

nO
nO

T
T

S
p

s

log)(log
)(

The system efficiency can be calculated by
dividing the speedup value to the number of
the processors from the system:









=










==
n

O
nO

n
nO

p
SE

log
1

)(
log

The sequential cost is equal with the Ts. The
parallel cost represents the total time con-
sumed by all the processors from the system
to solve the problem:

)log()(log)(nnOnOnOTpC pp =⋅=⋅=
The sum of the times dedicated to communi-
cation and synchronization activities is called
supplementary cost and its value can be ob-
tained using the following formula:

)log()()log(sup nnOnOnnOTTpCCC spspl =−=−⋅=−=

Bibliography
[Wyr04] R. Wyrzykowski, Parallel Process-
ing and Applied Mathematics, Springer, 2004
[Lad04] S. Ladd, Guide to Parallel Pro-
gramming, Springer-Verlag, 2004

[Dod02] Gh. Dodescu, B. Oancea, M.
Răceanu, Procesare paralelă, Editura Eco-
nomică, Bucureşti, 2002
[Sed98] R. Sedgewick, Algorithms, Addison-
Wesley, 1998

