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The main goal of this paper is to present a highly parallel program used to merge any two 
sorted lists into a single one ordered by the same rule. The program has to be as efficient as 
possible in order to maximize the speedup and to minimize the parallel execution time. 
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asically, a merging algorithm takes two 
sorted sequences as inputs and combines 

them into a single sorted sequence. Such an 
algorithm generally runs over multiple sorted 
lists in a time proportional to the sum of the 
lengths of the lists.  
The classical merging algorithm outputs, at 
each step, the data item having the lowest 
key. Given some sorted lists, it produces a 

sorted list containing all the elements in any 
of the input lists, and it does so in a time pro-
portional to the sum of the lengths of the in-
put lists. We can say with no doubt that the 
time complexity of the sequential version of 
the merging algorithm is equal with O(n). 
The Pascal source code of this version of se-
quential merging algorithm is presented be-
low (Alg.1). 

 

procedure SequentialMerging 
(var x:int_array;nx:integer; 
 var y:int_array;ny:integer; 
 var z:int_array); 
var crt_pos_x:integer; 
 crt_pos_y:integer; 
 crt_pos_z:integer; 
 i:integer; 
begin crt_pos_x:=1;  
 crt_pos_y:=1; 
 crt_pos_z:=1; 
 while (crt_pos_x<=nx) and (crt_pos_y<=ny) do 
 begin  if x[crt_pos_x]<y[crt_pos_y] then 
  begin z[crt_pos_z]:=x[crt_pos_x]; 
   crt_pos_x:=crt_pos_x+1; 
   crt_pos_z:=crt_pos_z+1; 
  end 
  else 
  begin z[crt_pos_z]:=y[crt_pos_y]; 
   crt_pos_y:=crt_pos_y+1; 
   crt_pos_z:=crt_pos_z+1; 
  end; 
 end; 
 if crt_pos_x<=nx then 
 begin  for i:=crt_pos_x to nx do 
  begin z[crt_pos_z]:=x[i]; 
   crt_pos_z:=crt_pos_z+1; 
  end; 
 end 
 else 
 begin for i:=crt_pos_y to ny do 
  begin  z[crt_pos_z]:=y[i]; 
   crt_pos_z:=crt_pos_z+1; 
  end; 
 end; 
end; 

Alg.1. Sequential merging 
 

Analyzing the algorithm we can observe that 
merging sorted lists is a very sequential ac-
tivity with little opportunities for parallelism. 
The algorithm compares pairs of two ele-
ments, the minimum value is written in the 

final array and the corresponding indexes are 
incremented. There is no room for parallel-
ism and concurrency. 
As like in the Rank Sort algorithm, we can 
notice that the final position of an element 
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X[i] can be directly computed based on its 
rank that can be obtained using the current 
position i and the corresponding position j in 
the second list Y. In such a way, the final po-
sition of the element will be Z[i+j-1].  
This observation can be easily justified in the 
following way: the first i-1 items from the 
list X are less than X[i] and must appear be-
fore this element in the final sorted list Z. 
Also, the first j-1 items from the second list 
are less than X[i] and must also appear be-
fore our element in the final list. So, by total, 
there are i-1+j-1 items that must appear prior 
to X[i] in the Z list. This is why the rank of 
the element X[i] will be equal with i+j-1 and 
the element will be placed directly into posi-
tion Z[i+j-1]. The same observation can be 
applied over the elements of the second list, 
Y. At the end, for every item from the initial 
lists we will obtain the rank that will be used 
to put in place the element at the right posi-
tion.  
Due to the fact the lists are already sorted, 
the binary search can be used to compute the 
corresponding position of the element in the 

other list. 
We still have an opened issue regarding the 
duplicate items in the two lists. Such ele-
ments will produce the same value of rank 
and therefore the final list will not be com-
plete. To avoid such a situation we need to 
create an asymmetry in the way in which the 
elements of the two lists are processed. When 
performing the binary search of list Y to find 
the location of X[i], all the elements that are 
equal with X[i] will be treated as if they were 
greater. In the same way, when the binary 
search of list X for Y[k] is performed, the 
elements equal with Y[k] will be managed as 
if they were lower. This asymmetry will pre-
vent the collision between the equal items 
from the two initial lists.   
The source code of the procedure that per-
forms the rank computation of a given ele-
ment using the binary search is presented be-
low (Alg.2). The PutInPlace routine has a 
complexity that is equal with the complexity 
of binary search operation, O(log n). The 
source parameter is used to generate the 
asymmetry.  

 

procedure PutInPlace 
(value:integer;pos:integer; 
 x:int_array;n:integer; 
 var z:int_array;source:integer); 
var start_pos:integer; 
 end_pos:integer; 
 crt_pos:integer; 
begin start_pos:=1; 
 end_pos:=n; 
  
 while (end_pos-start_pos>1) do 
 begin crt_pos:=(start_pos+end_pos) div 2; 
  if value<x[crt_pos] then end_pos:=crt_pos 
  else if value>x[crt_pos] then start_pos:=crt_pos 
       else if source=1 then start_pos:=crt_pos 
      else end_pos:=crt_pos; 
 end; 
 if value>x[end_pos] then crt_pos:=end_pos+1 
 else if value<x[start_pos] then crt_pos:=start_pos 
      else crt_pos:=end_pos; 
 z[pos+crt_pos-1]:=value; 
end; 

Alg.2. The PutInPlace procedure 
 

The sequential version of the merging algo-
rithm based on rank computation is presented 
below (Alg.3). The PutInPlace procedure is 
executed repeatedly by n times, where n is 
the sum of the lengths of the input lists. This 
is why the time complexity of this algorithm 
is equal with O(n log n), higher than the 
value obtained for the previous version.  
This rank based merging algorithm can be 

easier parallelized because the rank of ele-
ments can be concurrently computed on the 
processors from a parallel configuration. 
Every processor will calculate independently 
one or more ranks, depending on the number 
of processors from the parallel system. 
The parallel version of the merging algorithm 
is presented below (Alg.4). The source code 
was written using the Multi-Pascal language. 
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for a multiprocessor parallel architecture
 

procedure SequentialMerging 
(x:int_array;nx:integer; 
 y:int_array;ny:integer; 
 var z:int_array); 
var i:integer; 
begin for i:=1 to nx do 
  PutInPlace(x[i],i,y,ny,z,1);   
 for i:=1 to ny do 
  PutInPlace(y[i],i,x,nx,z,2); 
end; 

Alg.3. Sequential merging based on rank computation 
 

This version is obtained by running in paral-
lel the successive calls of the PutInPlace 
procedure. Due to the fact that all the loops 

are executed in parallel, the time complexity 
of the algorithm is equal with O(log n), much 
better compared with the sequential version. 

 

procedure Merging_Parallel 
(x:int_array;nx:integer; 
 y:int_array;ny:integer; 
 var z:int_array); 
var i:integer; 
begin forall i:=1 to nx do 
  PutInPlace(x[i],i,y,ny,z,1);   
 forall i:=1 to ny do 
  PutInPlace(y[i],i,x,nx,z,2); 
end; 

Alg.4. Sequential merging 
 

The main reason of parallelization a sequen-
tial program is to run the program faster. The 
first criterion to be considered when evaluat-
ing the performance of a parallel program is 
the speedup used to express how many times 
the parallel program runs faster than the se-
quential one, where both programs are solv-
ing the same problem. If the parallel program 
is executed on a computer with p processors, 
the highest value that can be obtained for the 
speedup is equal with the number of proces-
sors from the system. The maximum speedup 
value could be achieved in an ideal multi-
processor system where there are no commu-
nication costs and the workload of processors 
is balanced. 
If the Ts is the execution time of the sequen-
tial merging algorithm and Tp is the running 
time of the parallel version, the speedup can 
be computed according with the following 
formula: 
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The system efficiency can be calculated by 
dividing the speedup value to the number of 
the processors from the system: 
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The sequential cost is equal with the Ts. The 
parallel cost represents the total time con-
sumed by all the processors from the system 
to solve the problem: 

)log()(log)( nnOnOnOTpC pp =⋅=⋅=  
The sum of the times dedicated to communi-
cation and synchronization activities is called 
supplementary cost and its value can be ob-
tained using the following formula: 

 

)log()()log(sup nnOnOnnOTTpCCC spspl =−=−⋅=−=  
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