
Economy Informatics vol. 18, no. 1/2018 13

A scalable architecture for automated monitoring of microservices

Radu BONCEA1,2, Alin ZAMFIROIU1,3, Ioan BACIVAROV2

1National Institute for Research and Development in Informatics, ICI Bucharest,
2University Politehnica of Bucharest, Faculty of Electronics Telecommunications and

Information Technology
3Bucharest University of Economic Studies Bucharest, Romania

radu.boncea@ici.ro, zamfiroiu@ici.ro, bacivaro@euroqual.pub.ro

In this article we propose an architecture for monitoring microservices by logging key
performance metrics at both system and application levels. By using advanced analytics
algorithms, we can then classify the events in microservice's behavior and automate the
decision processes, thus improving the overall reliability and security. We will be using
Prometheus for storing short-live metrics, OpenTSDB for long term retention and RabbitMQ
for passing structured messages between various IT components which orchestrate the
collection of our microservices.

Keywords: microservice, distributed architecture, monitoring, complexity
JEL classification: C38, C8, O21

Introduction
Microservice architecture is a method of

developing software applications as a suite of
independently deployable, modular services
where each such microservice represents an
unique business process capable of
communicating through a well-defined,
lightweight mechanism to serve a business
goal. It has its roots in service-oriented
architecture and, initially, it was
indistinguishable from SOA. In fact, Netflix
used the term “fined grained SOA” [1].
Microservice oriented architecture greatly
improve [2]:
• deployability: shorter build-test-deploy

cycles, increased agility in rolling new
versions and applying patches, greater
flexibility in employing security,
replication, persistence;

• reliability through better fault isolation;
• availability: rolling out new versions or

applying patches require little downtime
as only specific microservices are
restarted;

• scalability: each microservice and be
deployed in containers, thus greatly
benefiting from the elasticity of the cloud;

• modifiability: more flexibility to use new
frameworks, libraries, data sources, and

other resources;
• management: the development effort is

divided across teams that are smaller and
work more independently.

Microservice architecture also has drawbacks
when compared to monolith architecture[3]:
• it adds complexity to the project just by

the fact that a microservices application is
a distributed system. You need to choose
and implement an inter-process
communication mechanism based on
either messaging or RPC and write code to
handle partial failure and take into account
other fallacies of distributed computing;

• it has the partitioned database architecture.
Business transactions that update multiple
business entities in a microservices-based
application need to update multiple
databases owned by different services.
Using distributed transactions is usually
not an option and you end up having to use
an eventual consistency based approach,
which is more challenging for developers;

• it makes testing much more complex then
in case of monolithic web application. For
a similar test for a service you would need
to launch that service and any services that
it depends upon (or at least configure stubs
for those services);

• it is more difficult to implement changes

1

14 Economy Informatics vol. 18, no. 1/2018

that span multiple services. In a
monolithic application you could simply
change the corresponding modules,
integrate the changes, and deploy them in
one go. In a Microservice architecture you
need to carefully plan and coordinate the
rollout of changes to each of the services;

- deploying a microservices-based
application is also more complex. A
monolithic application is simply deployed
on a set of identical servers behind a load
balancer. In contrast, a microservice

application typically consists of a large
number of services. Each service will have
multiple runtime instances. And each
instance need to be configured, deployed,
scaled, and monitored. In addition, you
will also need to implement a service
discovery mechanism. Manual
approaches to operations cannot scale to
this level of complexity and successful
deployment a microservices application
requires a high level of automation.

Fig. 1 Typical representation of a solution based on microservices.

Source: http://www.antonkharenko.com

In a standard monolithic architecture, the
application is monitored using black box
techniques by pushing key infrastructure and
performance metrics, such as server CPU,
memory, disk IO and network utilization to
solutions such as Nagios. White box
monitoring is done passively using SNMP
traps, a process that requires developers to
either alter the application logging subsystem
or to add an external asynchronous
mechanism to process existing applications
logs and send via SNMP the required metrics
to Nagios. Nagios also supports active
monitoring, where Nagios would do a
periodic check on the application, but,

usually, this type of monitoring is used to
check on specific states of the application and
it is not intended to poll metrics.
An example of how Nagios is used is shown
in Figure 2 where we have a monolithic
application that resides on the same server as
the rest of support applications, such as the
database. This deployment pattern is common
in most enterprises and the increase in
complexity, which usually means more
instances of the same application server, is
handled efficiently directly in Nagios and,
occasionally, by doing iterative adjustments to
SNMP trap system.

Economy Informatics vol. 18, no. 1/2018 15

Fig. 2. Monitoring a single application using Nagios

Problems occur when the application is
decomposed into services, each service
having its own deployment pattern and
requiring additional support applications such
as Message Exchange Brokers. In this
scenario, Nagios becomes unproductive and
time-series databases that support data
labeling, query languages and interfaces for
easy-integration are considered better choices.

2. Monitoring Tools
Monitoring platforms focus largely on the
gathering and analysis of the data that is
collected from applications and operating
system and network platforms on which they
run.

Prometheus is an open source monitoring
solution originally developed by SoundCloud.
It is widely used to store and query “time-
series data,” which is data that describes
actions over time. Prometheus is often
combined with other tools, especially
Grafana, to visualize the time series data and
to provide dashboards.
It uses LevelDB as storage engine and
features[4]:
• a multi-dimensional data model with

support for labels;
• a functional expression language that lets

the user select and aggregate time-series
data in real time and which can be used by
external systems via HTTP API calls;

• a pull model via HTTP for collecting time-
series;

• a push model model via intermediary
gateway for batch collections;

• autodiscovery of target sources.

There are two methods of integrating
Prometheus jobs/exporters into a microservice
architecture:
• implement standalone exporters,

independent of the microservice, that
consume microservices logs and expose
metrics via HTTP;

• integrate the exporter mechanics into
microservice using already existing
software libraries written in Python, Go,
Java, Scala, Ruby, C++, Erlang, Rust,
Node.js, .NET/C#, PHP.

There are also a number of libraries and
servers which help with exporting existing
metrics from third-party systems as
Prometheus metrics;
• databases: PostgreSQL, MySQL,

MongoDB, Oracle, Memcached,
CouchDB, MSSQL, Redis, ElasticSearch;

• hardware: Node/System exporter for
Linux/Unix, IoT Edison, apcupsd, IPMI,
Ubiquiti UniFi;

• messaging systems: RabbitMQ, MQTT,
Kafka, Beanstalkd;

• storage: Hadoop HDFS FSImag, Lustre,
ScaleIO, Gluster;

• HTTP: Apache, HAProxy, Nginx,
Passenger, Tinyproxy, Varnish;

• APIs: AWS ECS/Health/SQS, Cloudflare,
DigitalOcean, Docker Cloud/Hub,
OpenWeatherMap;

A very useful capability Prometheus has is
that of „scraping” data from systems that are
already exposing metrics in Prometheus
format such as Collectd, Kubernetes,
NetData, Grafana.

16 Economy Informatics vol. 18, no. 1/2018

OpenTSDB is built on top of HBase and
Hadoop and is focused on being a distributed
and passive time-series database with a query
language and graphing features. Unlike
Prometheus, OpenTSDB is not aware of the
surroundings, it has no knowledge of the
endpoints and no mechanics for finding faults
and alerting. This knowledge has to be

implemented independently, outside
OpenTSDb.
Because OpenTSDB is built on Hbase and
could scale horizontally, it is ideal for long
term retention of data. Prometheus does not
scale natively, instead it requires explicit
sharding which raises additional issues when
considering a full automation of the
monitoring system.

Fig. 3. OpenTSDB architecture

Elastic APM is an application performance
monitoring system built on the Elastic Stack.
It allows you to monitor software services and
applications in real time, collecting detailed
performance information on response time for
incoming requests, database queries, calls to
caches, external HTTP requests, etc. This
makes it easier to pinpoint and fix
performance problems quickly.
Elastic APM also collects automatically
unhandled errors and exceptions. Errors are
grouped based primarily on the stacktrace, so
you can identify new errors as they appear and
keep an eye on how many times specific errors
happen.
Elastic APM consists of four components:

• Elasticsearch: a search engine based on
the Lucene library. It provides a
distributed, multitenant-capable full-text
search engine with an HTTP web interface
and schema-free JSON documents;

• APM agents: persistent applications that
collect performance metrics and send it to
Elasticsearch via a middleware
application called APM Server;

• APM Server process data sent from APM
agents and stores it to Elasticsearch;

• Kibana UI: an open source data
visualization plugin for Elasticsearch. It
provides visualization capabilities on top
of the content indexed on an Elasticsearch
cluster

Economy Informatics vol. 18, no. 1/2018 17

Fig. 4. Elastic APM architecture
Source: https://www.elastic.co

The APM Server is a separate component for
the following reasons:
• It helps to keep the agents as light as

possible and since the APM Server is a
stateless separate component, it can be
scaled independently;

• For Real User monitoring data is collected
in browsers. APM Server prevents
browsers from interacting directly with
Elasticsearch (which poses a security risk)
and controls the amount of data flowing
into Elasticsearch;

• In cases where Elasticsearch becomes
unresponsive, APM Server can buffer data
temporarily without adding overhead to
the agents;

• Acts as a middleware for source mapping
for javascript in the browser.

• Provides a JSON API for agents to use
thereby improving compatibility across
different versions of agents and the Elastic
Stack.

TICK stack is an open source time-series
platform designed from the ground up to
handle metrics and events an is built on top of:
• Telegraf is a plugin-driven server agent

for collecting and reporting metrics.
Telegraf has plugins or integrations to
source a variety of metrics directly from
the system it’s running on, to pull metrics
from third party APIs, or even to listen for
metrics via a StatsD and Kafka consumer
services. It also has output plugins to send

metrics to a variety of other datastores,
services, and message queues, including
InfluxDB, Graphite, OpenTSDB,
Datadog, Librato, Kafka, MQTT, NSQ,
and many others.

• InfluxDB is a Time Series Database built
from the ground up to handle high write &
query loads. InfluxDB is a custom high
performance datastore written specifically
for timestamped data, including DevOps
monitoring, application metrics, IoT
sensor data, and real-time analytics.
Conserve space on your machine by
configuring InfluxDB to keep data for a
defined length of time, and automatically
expiring and deleting any unwanted data
from the system. InfluxDB also offers a
SQL-like query language for interacting
with data.

• Chronograf is the administrative user
interface and visualization engine of the
platform. It makes the monitoring and
alerting for your infrastructure easy to
setup and maintain. It is simple to use and
includes templates and libraries to allow
you to rapidly build dashboards with real-
time visualizations of your data and to
easily create alerting and automation
rules.

• Kapacitor is a native data processing
engine. It can process both stream and
batch data from InfluxDB. Kapacitor lets
you plug in your own custom logic or

18 Economy Informatics vol. 18, no. 1/2018

user-defined functions to process alerts
with dynamic thresholds, match metrics
for patterns, compute statistical
anomalies, and perform specific actions

based on these alerts like dynamic load
rebalancing. Kapacitor integrates with
HipChat, OpsGenie, Alerta, Sensu,
PagerDuty, Slack, and more.

Fig. 5. TICK platform overview

Source: https://www.influxdata.com

Raygun’s APM platform is a commercial
complete system that provides both
instrumentation and collector processes, as
well as a dashboard to visualize metrics data.
It can integrate GitHub, Slack, Jira Software,
PagerDuty, VictorOps and it features detailed
transaction tracing, dashboards, user
experience reporting and real user monitoring.
Zipkin is an open-source tracing system
designed specifically to trace calls between
microservices. It is especially useful for
analyzing latency problems. Zipkin includes

both instrumentation libraries and the
collector processes that gather and store
tracing data.
Kafka is a streams-processing system. It uses
a “publish/subscribe” methodology for
reading and writing data to a logical “stream,”
which is similar in concept to a messaging
system such as RabbitMQ. Kafka can be
combined with other tools such as Zipkin to
provide a robust solution for transmitting and
storing metrics data.

Table 1. Comparison of capabilities between Prometheus, OpenTSDB and Elastic APM

 Prometheus OpenTSDB Elastic APM
Storage LevelDB Hadoop/HBase Elasticsearch
Data ingestion
strategy

Active (polling - scraps
data from endpoints)
Passive (push –
applications push metrics)

Passive Passive

Alerts Yes No No
Targets
autodiscovery

Yes
Integration with Consul

No No

Horizontal scaling No
Scaling done through
explicit sharding and
federated architecture

Yes Yes

Economy Informatics vol. 18, no. 1/2018 19

Data labeling Yes Yes Yes
Integration API HTTP REST HTTP REST
Query language Yes Yes Yes
Data aggregation Yes Yes Yes
Data filtering Yes Yes Yes
Data downsampling Yes

Can be emulated using
combination of filters and
aggregators, such as
query_range and
max_over_time

Yes No

Arithmetic binary
operators

Yes Yes
As with version 2.3

No

4. Integration architecture
One conclusion we can draw by viewing
Table 1 is that Prometheus can be used to
actively collect metrics associated with
microservices, support applications and those
associated with he host and operating system.
Because Prometheus does not scale
horizontally, we will use OpenTSDB to store
and analyze historical data. In this regard,
Prometheus is configured (the remote_write
directive) to push data to OpenTSDB using a
remote storage adapter. Elastic APM can be
used to store events/transactions using APM
agents developed and integrated at
microservice level. Additionally,we can
capture exceptions and errors, including the
stack trace.
For exemplification, let’s consider a common
application which is accessing a database and
which has been decomposed into two
microservices, each microservice having its
own dedicated machine. The database server
also resides on a separate machine. In Figure
6 we propose an example integration
architecture for monitoring the microservices
and associated infrastructure.
We have deployed two Prometheus instances:
• one dedicated to scraping software metrics

by using in-house implemented exporters
for the two microservices and an open
source exporter for the database;

• one to scrap hardware metrics provided by
node exporter, an open source exporter
which provides statistics about CPU, disk

IO operations, average loading, memory,
network, file system, entropy, etc.

We have configured Prometheus instances to
forward metrics to a deployed cluster of
OpenTSDB instances for long term
preservation of data. Old metrics are
automatically purged from Prometheus after a
period of time specified via
storage.local.retention flag. Normally we
would not want Prometheus to keep data more
than one month, as we would be using
OpenTSDB to do data mining and statistics.
We are using Prometheus to do real-time
monitoring, such as triggering alarm events.
For that we use Prometheus Alert Manager, a
component that can be deployed separately
and which handles alerts sent by clients, such
as Prometheus and which supports
deduplicating, grouping, and routing of alerts
to the correct receiver integration such as
email, PagerDuty, or OpsGenie.
Additionally we have deployed an
Elasticseach APM server and Elasticsearch
cluster database to store microservice events
and transactions, along with exceptions raised
during runtime.
In our example we have deployed two alert
managers and we have integrated our own
receiver which forwards the alerts to a
Message Broker dedicated channel. This
allows other applications that listen on the
channel, to access the alert content and react.
The metrics from Prometheus and OpenTSDB
can be visualized using Grafana, an open

20 Economy Informatics vol. 18, no. 1/2018

source analytics solution that supports easy
integration with a large collection of time-
series database engines, including Prometheus
and OpenTSDB.

The events of the system will be monitored
using Kibana, an open source data
visualization plugin for Elasticsearch.

Fig. 6. An example of integration of Prometheus (used to store host and application related

metrics), OpenTSDB (long term retention) and Elastic APM for capturing transaction details

In the example described above, instead of
two Prometheus instances, we can use one.
The same applies to the Alert Manager
component. However, we wanted to highlight
the logical separation of metrics as part of
architecture, software vs hardware and
infrastructure vs applications.

Host metrics
The OS node exporter provides with host level
metrics such as:
• node CPU for each core as seconds the

cpus spent in each mode (idle, user,
system, iowait, guest, irq, etc);

• the total number of bytes read successfully
for each physical device attached to the
node;

• the total number of bytes written
successfully for each device;

• the number of I/Os currently in progress;
• the time in miliseconds spent doing I/Os;
• the weighted of milliseconds spent doing

I/Os;
• the he total number of milliseconds spent

by all reads;
• the total number of reads completed

successfully;
• number of reads merged;
• the total number of sectors read/written

successfully;
• the total number of milliseconds spent by

all reads/writes;
• bits of available entropy;
• filesystem space available to non-root

users;
• filesystem size;
• node load average with intervals for 1

Economy Informatics vol. 18, no. 1/2018 21

minute, 5 minutes and 15 minutes;
• physical and virtual memory used;
• current mapped memory;
• kernel stack size;
• free memory;
• network related metrics: number of

packets and packet size for each protocol
(TCP/UDP).

4. Conclusions
The transition from monolithic architecture to
microservice oriented architecture requires a
different approach when it comes to
monitoring the applications, the support
software and the infrastructure. As the
complexity kicks in, due to service
decomposition and distribution, standard
monitoring solutions such as Nagios are not
flexible enough to support the automatization
of the monitoring process. Instead, multiple
integrated and specialized solutions are
needed, working in tandem to collect metrics
and events from the dynamically distributed
components across the IT infrastructure. Such
a solution includes:
- Prometheus, a monitoring and trending

system with autodiscovery capabilities,
that can scrap metrics from targets and
which provides a reach query language;

- OpenTSDB, a distributed, scalable,
monitoring system that can be used to
keep available the historical data for data
mining and complex analytics, featuring
Hadoop, a powerful framework that
allows for distributed processing of large
data sets across clusters of commodity
computers using a simple programming
model;

- Elastics APM, an application performance
monitoring system built on the Elastic
Stack. It allows you to monitor software
services and applications in real time,
collecting detailed performance
information on response time for
incoming requests, database queries, calls
to caches, external HTTP requests, etc.

- Grafana, an analytics platform which
features visualizations, alerts,
notifications, dynamic dashboards, mixed

data sources, annotations and ad-hoc
filters.

- Kibana, a data visualization plugin for
Elasticsearch.

Acknowledgment
This work was supported by the research
programme Planul Sectorial M.C.S.I. Plan
sectorial de CD în programul ”Agenda
Digitală pentru România” – Secțiunea
”Servicii electronice 2018-2020”, project
number 76/19.06.2018 „Studiu privind
sisteme adaptive de recunoastere in stadii
incipiente a atacurilor cibernetice asupra
resurselor statale”.

References
[1] Allen Wang, Sudhir Tonse. Announcing

ribbon: Tying the netflix midtier services
together, January 2013.
http://techblog.netflix.com/2013/01/anno
uncing-ribbon-tying-netflix-mid.html

[2] Paulo Merson. Microservices Beyond the
Hype: What You Gain and What You
Lose. March 2018.
https://insights.sei.cmu.edu/saturn/2015/1
1/microservices-beyond-the-hype-what-
you-gain-and-what-you-lose.html

[3] Monolithic vs. Microservices
Architecture,
http://www.antonkharenko.com
/2015/09/monolithic-vs-microservices-
architecture.html

[4] R. Boncea, I. Bacivarov. A System
Architecture for Monitoring the
Reliability of IoT. In Proceedings of the
15th International Conference on Quality
and Dependability, pp.143-150.

[5] R. Chen, S. Li, and Z. Li. From monolith
to microservices: A dataflow-driven
approach. In 24th Asia-Pacific Software
Engineering Conference (APSEC), pages
466–475, Dec 2017.

[6] N. Dragoni, S. Giallorenzo, A. L.
Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina. Microservices:
Yesterday, Today, and Tomorrow, pages
195–216. Springer International
Publishing, Cham, 2017.

[7] S. Joshi. Organization & cultural impact of

22 Economy Informatics vol. 18, no. 1/2018

microservices architecture. In M.
Hoffman, editor, Advances in Cross-
Cultural Decision Making, pages 89–95,
Cham, 2018. Springer International
Publishing.

[8] R. Perrey and M. Lycett. Service-oriented
architecture. In 2003 Symposium on
Applications and the Internet Workshops,
2003. Proceedings., pages 116–119, Jan
2003.

[9] S. Prasad and S. B. Avinash. Smart meter
data analytics using opentsdb and hadoop.
In 2013 IEEE Innovative Smart Grid
Technologies-Asia (ISGT Asia), pages 1–
6, Nov 2013.

[10] T. W. Wlodarczyk. Overview of time
series storage and processing in a cloud
environment. In 4th IEEE International
Conference on Cloud Computing
Technology and Science Proceedings,

pages 625–628, Dec 2012.
[11] M. Richards. Microservices vs. Service-

Oriented Architecture. O'Reilly Report,
2016.

[12] Paul C. Brebner, Performance modeling
for service oriented architectures,
Companion of the 30th international
conference on Software engineering, May
10-18, 2008, Leipzig, Germany.

[13] A. Brunnert et al. Performance-oriented
DevOps: A Research Agenda. Technical
Report SPEC-RG-2015-01, SPEC
Research Group -- DevOps Performance
Working Group, Standard Performance
Evaluation Corporation (SPEC), August
2015

[14] https://www.elastic.co
[15] http://opentsdb.net/
[16] https://prometheus.io/
[17] https://www.influxdata.com/

Radu BONCEA is a Researcher at I.C.I. Bucharest. He has been involved in
several large European projects such SPOCS, eSENS, Cloud for Europe and
The Once Only Principle. As a Ph.D. student at Electronics,
Telecommunications and Information Technology, he’s interested in IoT and
Cloud Computing related technologies.

Alin ZAMFIROIU has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2009. In 2011 he has graduated the Economic
Informatics Master program organized by the Academy of Economic Studies
of Bucharest and in 2014 he finished his PhD research in Economic Informatics
at the Academy of Economic Studies. Currently he works like a Senior
Researcher at “National Institute for Research & Development in Informatics,
Bucharest”. He has published as author and co-author of journal articles and

scientific presentations at conferences.

