
26  Economy Informatics vol. 15, no. 1/2015 

 

Modeling Web Services with RoaML 
 

Cătălin STRÎMBEI, Georgiana OLARU (AVRAM)  
Al. I. Cuza University of Iasi  

linus@uaic.ro, geo.olaru@gmail.com  
 

In this paper we intend to argue whether a new service-based modeling approach could be 
technologically feasible, desirable by architects and developers and viable as new MDA plat-
form. This new approach we call it RoaML as a “step-brother (or sister)” of already estab-
lished SoaML initiative. We will debate whether RoaML can be a suitable modeling language 
for applications based on resource oriented architecture. 
Keywords: Web services, RESTful services, Service Oriented Architecture, ROA, SOA 
 

Introduction-Web Service-Based Ar-
chitectures and UML Modelling   

Originally intended to be a simple way of 
sharing and linking documents via the Inter-
net, the Web has evolved into one of the 
most complex and successful technologies 
available nowadays, a transformation that has 
taken place in a short period of time.  Conse-
quently, it captured the attention of research-
ers that sought to investigate the recipe of its 
success and to extend the applicability of its 
fundamentals to other kinds of software ap-
plications as well. 
Software architecture is an abstraction of the 
run-time elements of a software system. It is 
defined by the configuration of its elements – 
components, connectors, and data – con-
strained in their function and relationships in 
order to achieve a desired set of architectural 
properties (e.g., reliability, scalability, exten-
sibility, reusability). Currently, two architec-
tural styles are dominant: Service Oriented 
Architecture (SOA) and Resource Oriented 
Architecture (ROA). 
The SOA and ROA architectural design pat-
terns and the corresponding distributed pro-
gramming paradigms provide a conceptual 
methodology and development tools for cre-
ating distributed architectures. Distributed 
architectures consist of components that cli-
ents as well as other components can access 
through the network via an interface and the 
interaction mechanisms the architecture de-
fines; in the cases of ROA and SOA such dis-
tributed components will be named respec-
tively resources and services. 
With the emergence of SOA, a new UML 

specification was needed in order to cover 
the needs of designing services - SoaML.  In 
this article we will argue whether another ini-
tiative more appropriate for the specific 
needs of modeling ROA applications. 
 
1.1 SoaML Framework  
Service Oriented Architecture (SOA) is the 
paradigm for the development of software 
systems based on the concept of service. A 
development method based on the SOA par-
adigm requires some notations to present 
services, their interfaces and the way they are 
built, including the case where they are built 
from other services, the architecture of a sys-
tem in terms of services and the way they are 
orchestrated [6]. The SoaML specification 
defines a UML profile with a metamodel that 
extends UML to support the range of model-
ing requirements for SOA, including the 
specification of systems of services, the spec-
ification of individual service interfaces, and 
the specification of service implementations. 
The SoaML metamodel extends the UML 
metamodel to support an explicit service 
modeling in distributed environments. This 
extension aims to support different service 
modeling scenarios such as single service de-
scription, service-oriented architecture mod-
eling, or service contract definition. This is 
done in such a way as to support the automat-
ic generation of derived artifacts following 
the approach of Model Driven Architecture 
[9]. 
The OMG SoaML specification also intro-
duces the concept of services architecture to 
model how a group of participants that inter-

1 



Economy Informatics vol. 15, no. 1/2015  27 

 

act through services provided and used to ac-
complish a result. According to SoaML, a 
service is an offer of value to a service con-
sumer (a simple client or another service) 
through a well-defined interface that could be 
available to a community (which may be the 
general public). For SoaML, a service archi-
tecture is made by a group of participants 
providing and consuming services at specific 
service points [1]. The goals of SoaML are to 
support the activities of service modeling and 
design and to fit into an overall model-driven 
development approach, supporting SOA from 
both a business and an IT perspective. 
 
1.2 IBM Rational Rose Framework: REST 
Service Model 
Concerning the modeling of SOA require-
ments we have a well-defined standard 
(SoaML). Regarding the modeling of ROA 
requirements, we don’t have any specific of-
ficial guidelines. One attempt to customize 
the modeling and design for RESTful Web 
Services comes from IBM that has included 
in version 8.0.3 of Rational Software Archi-
tect Version a template for REST modeling 

[12]. This template proposes a set of ele-
ments for class and sequence diagrams like 
Resource Class, Path Dependency, GET Op-
eration, PUT Operation, POST Operation, 
HEAD Operation and Delete Operation. 
These elements allow some kind of basic re-
source modeling but they don’t offer other 
guidelines on how to model more complex 
architectures and we think that it does not 
represent a comprehensive modeling ap-
proach regarding ROA domain. 
 
2 ROA vs. SOA 
The traditional conceptual model of service-
oriented architectures, or the service-oriented 
paradigm, seems like one evolutionary way 
of distributed computing programming. As 
Object Orientation paradigm has “naturally” 
evolved from procedural programming and 
modular development, challenged by distrib-
uted computing models based on RPC, T. 
Earl argues that service orientation evolved 
from object orientation, challenged by new 
distributed computing and integration models 
BPM, EAI and, finally, by web services 
standardized such as SOAP initiatives [3]. 

 

 
Fig. 1. Service Architecture Paradigm Source Origins 

 
Our question is: REST oriented conceptual 
model could be the next evolutionary step of 
service-like architectures? Maybe … or may-
be not? The main advantage of SOA over 
ROA is the more mature tool support, type-

safety of XML requests. Conversely, the 
main advantage of ROA is the ease of im-
plementation, the agility of the design, and a 
lighter approach for business perspective. 
Thus, REST services differ from older 



28  Economy Informatics vol. 15, no. 1/2015 

 

SOA(P) services taking into consideration (at 
least) two perspectives: 
 the degree of sophistication: REST “phi-

losophy” assumes to simplify web service 
“protocol” as much as possible;  

 the overemphasis on the basic and self-
defining Rest principle of HATEOAS 
(Hypermedia as the Engine of Applica-
tion State), something like “if there is not 
HATEOAS then there is no Rest”. 

Taking into consideration the service design 
principles stated by T. Earl [3], [4], there are 
some subtle conceptual differences between 
SOA(P) and REST related to: 
 service contracts, concerning standardiza-

tion and design: RESTful requires no 
formal contract specification, although 
REST API standardization and version-
ing is promoted as best practice. In fact, 
RESTful proponents sustain very fluid 
REST APIs so that there is no “official” 
dependency to a formal service interface 
specification, REST API documentations 
are desirable but not to formally interfere 
with REST system architecture. There are 
some specialized tools to generate REST 
API docs, like Swagger, but there is no 
WSDL-like document implied. A service 
contract (like a WSDL document) looks 
like static typing (from programming 
languages) of the service providing com-
ponent. As opposite, REST approach fa-
vor a very dynamic approach, e.g. service 
operations could be specified in service 
resource instance representation as dy-
namic-links and not through an extra me-
ta-specification document; 

 service coupling, concerning intra-service 
and consumer dependencies: any service-
based architecture (or any kind of distrib-
uted component architecture) must have 
the attribute of interoperability. In this 
context, coupling refers to the way of 
managing service (component) interde-
pendencies: there is an abstract level that 
could be understood as service structural 
relationships and there is a runtime level 
where those structural relationships be-
came live (synchronous or asynchronous) 
connections. On the other side, REST 

services favor a more dynamic approach 
where link-lists, formatted using conven-
tional standards like HAL, JSON-LD, 
Collection+JSON or SIREN as they are 
discussed in [10], could be generated 
specifically for each resource instance, 
unlike the more rigid approach of SOAP, 
where relationships are mostly endpoints 
statically defined in WSDL definitions; 

 service discoverability, concerning inter-
pretability and communication: SOA(P) 
promoters developed a sophisticated 
standard in this regard - UDDI, but, as 
REST means “simplification”, REST 
supporters considered that there is no 
need for a “middleman” like a “service 
registry”, the REST /service is a URL, 
and the URL must be formatted to be 
self-explained;    

 service composability, concerning com-
position member design and complex 
compositions: SOA(P) approach, in the 
same line with service coupling principle, 
favor a contract-first pattern, as it is 
coined by R. Daigneau [7]. That means a 
static way to define composite services 
through WSDL specific documents, a de-
clarative workflow spread in industry 
within the form of BPEL Orchestrators. 
On the other side, REST approach favor a 
more dynamic way to compose web ser-
vices based on URL-links (as de facto re-
lationships) close to point-to-point com-
posability [2]. The are some critics to this 
kind of linking services which claim that 
point-to-point should not be considered 
as a kind of composability taking into 
consideration the that business logic is 
encapsulated in service implementation. 

Therefore “traditional” SOA design princi-
ples are not quite entirely appropriate for 
RESTful-web services too, consequently 
ROA architectures might need different ser-
vice design solutions. 
 
3 Zero-Based Approach of RoaML 
In our opinion, a radical innovative approach 
assumes a “zero-based approach” - meaning 
that it will not continue or refine an existing 
conceptual metamodel as “UML for Rest” or 



Economy Informatics vol. 15, no. 1/2015  29 

 

“UML for ROA” or even “UML for SOA”... 
Our goal is to preserve simplicity declared by 
REST framework “founders” and theorists, 
but the “great compromise” is how to main-
tain consistency in the same time. In the fol-
lowing we rather propose some guiding prin-
ciples for a business-oriented REST/ROA 
metamodel, and not a complete UML profile 
or framework for REST oriented architec-
tures. 
3.1 Metamodels 
Our proposal takes into consideration an ap-
proach based on three delimited profiles, as 
in Figure 2: 
 one focused on the application domain 

modeling, in fact the business side of the 
systems, that we named DDD Metamodel 
to invoke “Domain Design Driven” prin-

ciple to model software components for 
business[8]; 

 one more substantial and consistent, 
named REST Metamodel, focused on 
modeling application services or compo-
nents using RESTful principles. This 
metamodel also covers some elements 
dedicated to architectural modeling of 
more complex application systems from 
REST services, into a sub-profile named 
ROA Metamodel;  

 last one, the REST Domain Metamodel, 
has the integrator role, so that meta-
modeling elements from Rest Metamodel 
(and ROA sub-metamodel) to be tailored 
for business specific needs. 

 

 
Fig. 2. RoaML Metamodels and their relationships 

 
3.2 From REST Metamodel to 
ROA Metamodel 
The core REST metamodel, makes a distinc-

tion between REST resources (marked with 
WebResource stereotype) and the REST ser-
vices, as their producers, see Figure 3.  

 



30  Economy Informatics vol. 15, no. 1/2015 

 

 
 

Fig. 3. Core REST Metamodel stereotypes and their relationships 
 

Also this metamodel assumes the existence 
of resource descriptions where links have a 
fundamental role (considering HATEOAS 
principles). These hyperlinks could identify 
the resource (WebLinkSelf), could represent 
structural relationships with other resources 
(WebLinkRelation) or could signify an action 
endpoint concerning resource itself (other 
than standard actions based on GET, POST, 
PUT, DELETE requests from HTTP proto-
col). Another important distinction refers to 
resource archetypes [8] represented by a set 
of specialized WebResource stereotypes: 
Document, Collection of documents, Store 
and Controller.  

A critical aspect of any component-based 
model concerns also the way to assemble in-
dividual components in complex systems. In 
order to address these issues in the context of 
REST services based architecture, we pro-
pose a meta-extension to the REST core-
metamodel in the form of a ROA 
(sub)metamodel (shown in figure 4) based on 
the distinction between REST service and 
REST resource, that will take into considera-
tion: (i) resource binding using relation-links; 
(ii)service binding using service-links guided 
by the link-relations from core resource 
model. 

 



Economy Informatics vol. 15, no. 1/2015  31 

 

 
Fig. 4. An architectural metamodel for ROA based systems 

 
3.3 REST Domain Metamodel 
Finally, the REST Domain metamodel (see 
figure 5) is centered on business WebEntity 
concept that tries to combine a fundamental 

concept from business metamodel with the 
REST WebResource from REST architectur-
al model. 

 

 
Fig. 5. An architectural metamodel for Rest service based systems 

 
 



32  Economy Informatics vol. 15, no. 1/2015 

 

The WebEntity description will use at least 
three other meta-elements: 
 entityUID for identity purposes, but in 

the form of self-links; 
 web-entity-attributes; 
 web-entity-relationships coming from the 

web-link-relations of REST core meta-
model. 

Starting from this framework, a MDA initia-
tive could further add a new level in meta-
modeling approach: e.g. one could define a 

JEE metamodel for JEE as the platform-of-
choice to implement REST services and re-
sources. 
 
4 RoaML Target Audience 
The success or failure of any software devel-
opment or technologically initiative depends 
on a critical “quality”: the popularity that 
could engage a prospective massive audi-
ence.

 

 
 

Fig. 6. Measuring REST vs. SOA audience 
 

We have studied the popularity of SOA ver-
sus REST in the last years and we found the 
following: 
 A series of statistics from Programmable 

Web shows a growth of the REST API  
from 58% in 2006 to 73% in 2011, while 
the SOAP API registered a decrease from 
29% in 2006 to 17% in 2011 [14]. 

 Another study from indeed.com shows 
that the trend of REST jobs is increasing 
(1% in 2014) while the one for SOA jobs 
is decreasing (0.3% in 2014) [15], see 

figure 7.  
 Google trend is showing also a growing 

interest in REST versus SOA based on 
the number of Google searches of the 
topic [13], see figure 6. 

Judging by the success of REST we can say 
that RoaML has an important potential audi-
ence. The key point for the successful adop-
tion of RoaML is represented by its simplici-
ty and flexibility, the same principles that 
recommend REST over SOAP. 

 
 



Economy Informatics vol. 15, no. 1/2015  33 

 

 
 

Fig. 7. Job trends from Indeed.com 
 

5 Conclusions and Future Work 
As we have argued in our paper, RoaML 
could be a suitable modeling language for 
applications based on resource oriented ar-
chitecture. At this moment we are presenting 
just some guiding principles for a business-
oriented REST/ROA metamodel, but we are 
planning to improve our metamodel and also 
to propose a MDA approach for implement-
ing REST services and resources. 
 
References  
 [1] C. Choppy, G. Reggio, A Well-Founded 

Approach to Service Modeling with 
Casl4Soa, ACM, 2010 

[2] R. T. Fielding, Architectural Styles and 
the Design of Network-based Software 
Architectures, CHAPTER 5 Representa-
tional State Transfer (REST), 
http://www.ics.uci.edu/~fielding/pubs/dis
sertation/rest_arch_style.htm, 2000 Print-
ed book 

[3] T. Erl, SOA: principles of service design, 
Pearson Education, Inc., Boston, Massa-
chusetts: 2008 

[4] T. Erl [et.al.], Web service contract de-
sign and versioning for SOA, Pearson 
Education, Inc., Boston, Massachusetts: 
2009, pp.25-26 

[5] M. Massé, REST API Design Rulebook, 
Gravenstein Highway North: O’Reilly 

Media, Inc.m 2012, pp.15-16 
[6] P. Brown, Implementing SOA: Total Ar-

chitecture in Practice, Addison Wesley 
Professional, 2008 

[7] R. Daigneau, Service design patterns: 
fundamental design solutions for 
SOAP/WSDL and restful Web services, 
Westford, Massachusetts: Pearson Educa-
tion, Inc., 2012, pp.85-93 

[8] E. Evans, Domain Driven Design: Tack-
ling Complexity in the Heart of Software, 
Pearson Education, 2004. 

[9] OMG, Service oriented architecture 
Modeling Language (SoaML) Specifica-
tion Version 1.0.1, 2012 

[10] K. Sookocheff, On choosing a hyperme-
dia type for your API - HAL, JSON-LD, 
Collection+JSON, SIREN, Oh My!, 
http://sookocheff.com/posts/2014-03-11-
on-choosing-a-hypermedia-format/  

[11] Vinay Sahni, Best Practices for Design-
ing a Pragmatic RESTful API, 
http://www.vinaysahni.com/best-
practices-for-a-pragmatic-restful-api , 
2014 

[12] S. Katoch, Design and implement 
RESTful web services with Rational 
Software Architect, 
http://www.ibm.com/developerworks/rati
onal/library/design-implement-restful-
web-services/  , 2011 



34  Economy Informatics vol. 15, no. 1/2015 

 

[13]http://www.google.com/trends/explore#q
=%2Fm%2F03nsxd%2C%20%2Fm%2F
0315s4&date=1%2F2007%2098m&cmpt
=q&tz  

[14] http://www.infoq.com/news/2011/06/Is-

REST-Successful   
[15]http://www.indeed.com/trendgraph/jobgr

aph.png?q=Rest%2C+SOAP"  bor-
der="0" alt="Rest , SOAP Job Trends 
graph”

 
 

 Cătălin STRÎMBEI has graduated the Faculty of Economics and Business 
Administration of Al. I. Cuza University of Iaşi in 1997. He holds a PhD di-
ploma in Cybernetics, Statistics and Business Informatics from 2006 and he 
has joined the staff of the Faculty of Economics and Business Administra-
tion as teaching assistant in 1998 and as associate professor in 2013. Cur-
rently he is teaching Object Oriented Programming, Multi-Tier Software 
Application Development and Database Design and Administration within 

the Department of Business Information Systems, Faculty of Economics and Business Ad-
ministration, Al.I.Cuza University of Iaşi. He is the author and co-author of four books and 
over 30 journal articles in the field of object oriented development of business applications, 
databases and object oriented software engineering. 

 
Georgiana OLARU (AVRAM) has graduated the Faculty of Economics 
and Business Administration of Al. I. Cuza University of Iaşi in 2008. She is 
a PhD student in Business Information Systems with interests in modeling 
and design of software applications. She is a co-author in one book and au-
thor/co-author for 8 journal articles in the field of cloud computing, model-
ling and design of software applications and database design.  
 


