
Economy Informatics vol. 12, no. 1/2012 5

SOA and Web Technology for Computing the Intrinsic Entropy of BSE

Listed Stocks

Claudiu VINŢE

1
, Ion SMEUREANU

1
, Ionuţ-Alexandru LIXANDRU

2

1
Bucharest University of Economic Studies

2
Bucharest Stock Exchange

claudiu.vinte@ie.ase.ro, smeurean@ase.ro, alexandru.lixandru@bvb.ro

Measuring investors’ level of interest for a traded equity product can provide, along with the

status of the stock market as a whole, a consistent mean for building a hierarchy among the

traded equities. The concept of intrinsic entropy associated to stock exchange traded equity

has the ability to capture the factual perception of investors regarding the performance of a

publically traded company. Our ongoing research has been conducted based on the transac-

tions executed on the Bucharest Stock Exchange (BSE), and aims to prove that price variation

weighted entropy can offer a synthetic and readily computed indicator, for evaluating direc-

tion and intensity of trading activity. This paper will focus on how trade data is captured, and

stock intrinsic entropy is computed and presented within a SOA solution.

Keywords: Service-Oriented Architecture (SOA), Message-Oriented Middleware (MOM), Ja-

va Message Service (JMS), Stock Intrinsic Entropy, Web Services

Introduction

Entropy concept originated in physics,

and it plays important roles in numerous oth-

er disciplines ranging from logic and statis-

tics to biology and economics. However,

there is not an unique or unified interpreta-

tion of this concept. Entropy is defined dif-

ferently in different contexts, and even within

the same domain, different notions of entropy

are at work. Some of these are defined in

terms of probabilities, others are not. Even

when entropy is defined in terms of probabil-

ities, these could be either probabilities

chances – as physical probabilities - or cre-

dence - as degrees of belief [1].

Gibbs defined in 1878 the most general for-

mula for the entropy of a thermodynamic

system, after earlier work by Boltz-

mann (1872). The Gibbs entropy,

 ∑

 ()

where kB is the Boltzmann constant, and pi is

the probability of a microstate.

The summation is over all the possible mi-

crostates of the system, and pi is the probabil-

ity that the system is in the i
th

microstate [1].

For most practical purposes, this can be taken

as the fundamental definition of entropy

since all other formulas for S can be mathe-

matically derived from it, but not vice versa.

The most general interpretation of entropy is

as a measure of our uncertainty about a sys-

tem. The equilibrium state of a system max-

imizes the entropy because we have lost all

information about the initial conditions ex-

cept for the conserved variables. This uncer-

tainty is not of the everyday subjective kind,

but rather the uncertainty inherent to the ex-

perimental method and interpretative model.

The interpretative model has a central role in

determining entropy. In other words, the set

of macroscopic variables one chooses must

include everything that may change in the

experiment; otherwise, one might see de-

creasing entropy [2]. We will see later on that

the number of states observed or taken into

consideration can have a significant impact

on the value of entropy, and in contouring of

a certain conclusion or another during analy-

sis.

In information theory, entropy is a measure

of the uncertainty associated with a random

variable. In this context, the term usually re-

fers to the Shannon entropy [3], which quan-

tifies the expected value of

the information contained in a message, usu-

ally in units such as bits. In the context of

1

6 Economy Informatics vol. 12, no. 1/2012

communication, a message means a specific

realization of the random variable.

Equivalently, the Shannon entropy is a meas-

ure of the average information content one is

missing when one does not know the value of

the random variable. The entropy of a mes-

sage is in a certain sense a measure of how

much information it really contains.

In finance and economics literature, entropy

and information theory analysis experienced

a brief surge in interest during the early

1970’ [4].

The fundamentals of employing entropy

analysis in economics and finance were later

on questioned by Horowitz and Horowitz

(1976) [5]. They tried to conclude if entropy

analysis measures meaningful information,

which would not be otherwise available to

standard statistical techniques, such as vari-

ance or correlation analysis. On the other

hand, there does not seem to be any statistical

measure that states whether or how meaning-

ful information is in economic sense. In their

papers (1972 [6], 1974 [7]) Philippatos and

Wilson argue that entropy is a better statisti-

cal measure of risk than variance measure,

since entropy is a nonparametric measure – it

does not make assumptions concerning the

underlying probability distribution. An addi-

tional argument was made by White (1974)

[8] who states that, since entropy analysis is

not integrated into economic theory, includ-

ing the theory of choice under uncertainty, it

should not be used in economic and financial

studies [9].

These early interpretations of entropy and in-

formation theory, and their applicability in

the economic realm were later on left behind,

once entropy was integrated into dynamic

models of economic behavior. Shackle

(1952) [10] was the earliest researcher to ap-

ply the concepts of information theory to

economics, in the field of business decisions.

He splits a decision into two extreme compo-

nents: a representative gain (focus gain) and

a representative loss (focus loss). Subse-

quently, he attaches a subjective probability

to each extreme case, and measures the po-

tential surprise to the investor. In this con-

text, an occurrence with a low probability

contains more surprise than an occurrence

with high probability, and therefore having

the amount of surprise as a measure of risk

on the investment.

2 A brief presentation of the proposed

stock intrinsic entropy model

In an earlier paper [11], we proposed an en-

tropic model that intends to measure the in-

vestor interests in a given stock, listed and

traded on a stock exchange, along with the

indication regarding the direction of interest:

in buying or in selling the stock.

In the original Gibbs entropy (1), there is kB,

the Boltzmann constant, which for obvious

reasons was not carried over as such in the

information entropy proposed by Shannon.

The original information entropy develop-

ment and the economics literature in general

use the convention of having the constant

equal to 1.

 ∑

 ∑

 () ()

From this general form of computing the en-

tropy, Nawrocki and Harding (1986) [9] in-

troduced the concept of weighted entropy.

They noted that there appears to not be any a

priori reason why C should be constant for

all the observed (considered) system states. It

had been observed that the generally accept-

ed calculation for the entropy is not a good

measure of security risk because it ignores

the states values of different frequency clas-

ses used in the calculation.

Our model starts from interpreting the fol-

lowing observations relative to intraday

transactions executed on a stock exchange. A

trade made on the market for a given stock at

a certain price means that:

a) the quantity executed through that transac-

tion, relative to the total quantity executed

for the considered stock during the day, up

to the moment of entropy calculation, rep-

resents the degree of credence that the

market gives to the price level at which

the trade was made;

b) the price at which the match occurred, rel-

ative to a selected reference price, offers

Economy Informatics vol. 12, no. 1/2012 7

an indication for the inclination of the

market to (rather) buy or sell the consid-

ered stock.

The intraday stock entropy model that we

propose has the following formalization,

being the intraday entropy computed for

symbol X at moment t.

 ∑(

 ̅

)

 (

)

 ()

where the components are:

n - total number of transactions (execu-

tions) realized on symbol X from the

beginning of trading session up to

moment t

i - ordinal execution (trade) number

 - executed quantity (number of

shares) of execution i for symbol X

 - total executed quantity (number of

shares) during the day for symbol X,

up to moment t

 - price of execution i for symbol X

 ̅ - a reference price for symbol X

Regarding the reference price to be em-

ployed, we experimented with the closing

price from the previous day of trading, the

opening price of the current day, and the vol-

ume weighted average price (VWAP) com-

puted with trading data realized till the most

recent considered transaction. The latter op-

tion for the reference price means that if we

are to consider for the entropy calculation the

trade i, then the VWAP price is computed up

to trade i-1 (inclusive):

 ̅
∑

∑

 ()

Where qk and pk are the quantity and the

price, respectively, corresponding to the k

ordinal transaction (execution) of the day.

The fractions

 are assimilated to probabili-

ties, the probability of having the execution i

at a certain price level, and the following

condition has to be satisfied:

 ∑

3 System architecture, components and

functionality

One of desiderates that we embraced from

the initial phase of this research was the

commitment for employing open source

technologies throughout the entire system

environment.

The architectural design is one of service-

orientation (SOA). Each component of the

system exposes its functionality, as a service

provider, to the other components [12]. The

requests for services and the replies are

flowed through a message-oriented middle-

ware (MOM). A MOM makes use of a mes-

sage provider (broker) to mediate the mes-

saging operations [13]. In this parading, the

elements of a MOM-based system are the

client applications, the messages, and the

message provider. Under the broad umbrella

of client applications, can be in fact identi-

fied certain applications that functionally

play the role of a client, and others that have

the functional role of a server. All the system

applications are perceived as clients of the

MOM message broker [14]. Within a MOM-

based system, a client makes an API call by

sending a message to a destination managed

by the message provider. The call triggers

message provider services to route and deliv-

er the message to the consumer. Once the

message was sent, the producer can continue

the processing flow, relying on the fact that

the message provider retains the message un-

til a consumer component is available to pro-

cess it. In this manner, the MOM-based mod-

el, in connection with the message provider,

open the possibility of creating an architec-

ture with loosely coupled components. Such

a system can continue to function reliably,

without downtime, even when individual

components or connections fail. The client

applications are consequently effectively re-

lieved of every communication issue, except

that of sending, receiving and processing

messages [15].

We will briefly describe the functionality of

each system component, as they were illus-

trated in Figure 1.

8 Economy Informatics vol. 12, no. 1/2012

Physical

Destinations

Persisted Messages

and Broker State

Configuration Files

and Logs

User Repository

JMS

Provider

Web Server

Firewall

. . .

SOAP
Client

Company Feed (CF) Bucharest

Stock

Exchange

(BSE)

Companies

Java Client Runtime

Java
Client

Runtime

Data Base

Server (DBS)

Trade Entropy

Servlet (TES)

BVB

Entropy

webpage

BVB

Entropy

webpage

BVB

Entropy

webpage

SOAP

Client
Trade Feed (TF)

Java Client Runtime

Trades

HTTP Tunnel Servlet

Fig. 1. System architecture for computing the intrinsic entropy of BSE listed stocks

Company Feed (CF) captures data regarding

the financial instruments traded on Bucharest

Stock Exchange (BSE), listed companies and

their status, close price, volume etc.

The web service made available by BSE is

accessible through SOAP formatted messag-

es [16]. Once the company data is captured,

CF stores it in the system database.

Data Base Server (DBS), in the context of

stock intrinsic entropy computation, is the

component that provides the historic trade

data to web GUI, based on a request-reply

model (in asynchronous fashion). In order to

improve the overall response of the system,

DBS employ prefects historical trade data

from the database at launch, for a time inter-

val of 90 days, and has it readily available in

memory for the client requests.

Trade Feed (TF) is the application responsi-

ble with retrieving market data from the Bu-

charest Stock Exchange. BSE disseminates

market data to different types of end-users,

from individual investors to professional

trading firms, financial analysts or academic

institutions, through different channels and

by utilizing different techniques

Web services are de facto standard for in-

teroperability over internet. A web service is

a software system designed to support ma-

chine-to-machine interaction over a network.

Web service interactions are described

through a XML-based format, called Web

Service Description Language (WSDL) [17].

The WSDL provides a machine-readable de-

scription of the service interface, making all

the information available for interaction easi-

ly accessible to any system acting as a web

service client [18]. The information exposed

through WSDL include the address or con-

nection point of the web service, usually rep-

Economy Informatics vol. 12, no. 1/2012 9

resented by an HTTP URL; the web service

operations which can be performed and the

messages needed by each operation; the data

structures used for input and output in each

operation and the transport protocol [19]. The

data structures used by the web services are

described by using the XML Schema Defini-

tion (XSD) syntax, which provides a unified

way of expressing both simple and complex

data types. The data collected from the BSE

market data service encompasses mainly in-

formation related to the trades that took place

throughout the trading day on the primary

equity market. For each trade, the traded vol-

ume, the execution price and the trade time

are included, so the data structure used for

this purpose is fairly simple. The description

of this structure in XSD format, as it appears

in the BSE web service description file

(WSDL file) is enclosed below:

<s:complexType name="TypeTrade">

 <s:sequence>

 <s:element name="TradeID"

 type="s:long"/>

 <s:element name="Symbolcode"

 type="s:string"/>

 <s:element name="Marketcode"

 type="s:string"/>

 <s:element name="TradeTime"

 type="s:dateTime"/>

 <s:element name="Volume"

 type="s:long"/>

 <s:element name="Price"

 type="s:decimal"/>

 </s:sequence>

</s:complexType>

The web service operation for retrieving the

trading data will return an XML document

containing a list of elements that follow the

above specifications. Below is a fragment of

an actual response to a web service call:

<ArrayOfTypeTrade>

 <TypeTrade>

 <TradeID>10830174</TradeID>

 <Symbolcode>SIF1</Symbolcode>

 <Marketcode>REGS</Marketcode>

 <TradeTime>2012-06-

14T10:15:27.877</TradeTime>

 <Volume>5000</Volume>

 <Price>0.8510</Price>

 </TypeTrade>

 <TypeTrade>

 <TradeID>10830402</TradeID>

 <Symbolcode>SIF1</Symbolcode>

 <Marketcode>REGS</Marketcode>

 <TradeTime>2012-06-

14T10:57:25.547</TradeTime>

 <Volume>4500</Volume>

 <Price>0.8520</Price>

 </TypeTrade>

</ArrayOfTypeTrade>

The advantage of using a WSDL file is that a

software system that interacts with the web

service will have all the information it needs

to parse the response and extract the data; the

structure of the response and the type of each

element are all included in the definition file.

Also specified through the WSDL are the

transport protocols, or how the data will be

transferred from one system to another as

part of the interaction. Traditionally the web

services have been using SOAP as their

transport, but other protocols such as HTTP

can be used as well. The web service provid-

ed by the Bucharest Stock Exchange accepts

both HTTP and SOAP protocols. SOAP (ini-

tially an acronym of Simple Object Access

Protocol and later used as a stand-alone

term) represents a formal set of conventions

governing the format and processing rules of

a web service message [20]. These conven-

tions include the interactions among systems

in a decentralized, distributed environment,

generating and accepting messages for the

purpose of exchanging structured and typed

information. Although HTTP transport might

be easier to use and in some cases might

yield faster response times, the SOAP

transport has the advantage of providing an

extensible framework for message exchange.

Therefore, the processing logic necessary to

transmit, receive, process or relay a message

will follow the conventions defined by the

SOAP protocol, for all peers involved in the

information exchange. Another advantage of

SOAP is that messages can be carried within

or on top of different underlying protocols

for the purpose of exchange. For example,

for a web-based access, a SOAP message

could be sent as the body of an HTTP re-

quest. In other setups, it can be sent over a

TCP stream, inside an email message

(through SMTP), or as a JMS message.

The message framework imposed by SOAP,

along with all the application specific exten-

sions and the underlying transport protocols

10 Economy Informatics vol. 12, no. 1/2012

are specified in the web service description

file. By including this type of information in

the service interface a software system will

know how to connect to the web service and

how to exchange information. This approach

will also hide the implementation details

from the peers, allowing each system to be

developed independently from both a hard-

ware and software standpoint.

Although the BSE web service offers both

HTTP and SOAP for message exchange, we

chose to use the SOAP transport for DTF ap-

plication. Requests and responses to and

from the web service are formatted as SOAP

messages, from which the actual data is ex-

tracted.

Trade Feed service runs as a continuous pro-

cess, which collects intraday trading data

from the BSE corresponding web service:

traded volume, execution price and trade

time for all traded symbols. Trading data is

actively captured at an interval of a few

minutes. Due to the architecture of the web

services in general, and the BSE implementa-

tion in particular, our application needs to pe-

riodically poll for data.

Although recent developments in the SOAP

specification allow for the asynchronous web

service calls, this feature is not widely spread

yet. The BSE web service itself does not of-

fer the ability to asynchronously retrieve the

data; therefore, all requests must be synchro-

nous. In synchronous mode, any request must

be followed immediately by a response from

the web service. The drawback of such a par-

adigm is that the client platform must poll the

data it needs. Other channels for data dissem-

ination provided by the BSE offer real-time

updates but have other disadvantages, like

higher cost and complexity of communica-

tion model, or the use of proprietary data ex-

change protocols.

For the current research, where the real-time

data is not critical, we chose the web service

channel because of the reduced complexity

and implementation costs.

Once TF component retrieves new trading

data from the BSE, it extracts it from the

SOAP message and passes it on to two dif-

ferent modules: the persisting module, which

stores the information to a local database for

later use, and the stock entropy module.

Trade Entropy Servlet (TES) is responsible

with computing the values of the intrinsic en-

tropy for all the stocks, and with publishing

them.

TES is a web application which runs within a

web server. It is built upon the Java Servlet

specification, which states that the applica-

tion remains active as long as the web server

is running, as opposed to other types of web

applications, which are short-lived and active

only during the life-cycle of a web request

[21]. This architecture allows the stock en-

tropy module to wait for new market data to

be passed on by the TF service as it becomes

available. Once new data is received, the

module re-computes the values of the stock

entropy in a progressive manner. For each

trade that took place, the entropy value is de-

termined based on all the previous trades per-

formed up to that moment in time. Thus,

each trade done on the market will have a

corresponding value of the stock entropy,

which allows for easy tracking of its evolu-

tion throughout the day. It is important to

note that the maximum number of observa-

tions of the entropy value is limited to the

number of transactions. Thus, the more heav-

ily a financial instrument is traded, a higher

number of values can be calculated for the

entropy, and more accurate its evolution can

be determined during the day. TES servlet

keeps all the computed values in memory and

disseminates them through public web pages,

which display the evolution of the entropy

for all stocks. The computed values of the en-

tropy are published in a structured format

(using JavaScript object notation) and are

then used as the input data for graphical

charts and tables.

The entire system has been designed and im-

plemented in conjunction with Java Message

Service (JMS) API. JMS specification cap-

tured, from its conception, the essential ele-

ments of a generic messaging system, name-

ly:

 the concept of a messaging provider that

routes and deliver messages;

Economy Informatics vol. 12, no. 1/2012 11

 distinct messaging patterns, or domains

such point-to-point messaging and pub-

lish/subscribe messaging;

 facilities for synchronous and asynchro-

nous message receipt;

 support for reliable message delivery;

 common message formats such as text,

byte and stream.

Messaging among system components is

achieved through the following JMS destina-

tions:

 TRADE_TOPIC – destination topic on

which TF module publishes the captured

trades from BSE, and at which DBS and

TES subscribe;

 COMPANY_TOPIC – destination topic on

which CF module publishes the captured

company data from BSE, at which DBS

subscribes;
 INSTRUMENT_LIST_REQUEST_QUEUE

– destination queue at which TES sends

the requests for the list of instruments

traded on BSE, and which is listened by

DBS;

 INSTRUMENT_LIST_REPLY_QUEUE –

destination queue at which DBS places

the reply with list of instruments, to be

retrieved by TES;

 TRADE_RANGE_REQUEST_QUEUE –

destination queue at which TES sends

the request for the range of trades corre-

sponding to a certain traded symbol, re-

quest which is listened by DBS;

 TRADE_RANGE_REPLY_QUEUE – desti-

nation queue at which DBS places the

reply with the range of trades corre-

sponding to the requested symbol, to be

retrieved by TES.

Illustrated in Figure 2 are the system compo-

nents, and manner in which the messages

flow among them.

Message Broker

TRADE_RANGE_REQUEST_QUEUE

DCF
Delayed Company

Feed TRADE_RANGE_REPLY_QUEUE

COMPANY_TOPIC

TRADE_TOPIC

ETS
Entropy Trade Servlet

DBS
Database Server

DTF
Delayed Trade Feed

INSTRUMENT_LIST_REQUEST_QUEUE

INSTRUMENT_LIST_REPLY_QUEUE

Fig. 2. The message flow among system components

The graphics are created using a specialized

library, called HighCharts. It is written in

pure JavaScript, and is based on native web-

browser technologies. It does not require any

third-party client plug-ins like Flash or Java,

and it does not need to interact with a server

as long as the input data is available locally

in the web-browser [24]. The library offers

numerous chart types, which can be easily

customized through a simple configuration

syntax based on JavaScript object notation

(JSON). It offers features like range selec-

12 Economy Informatics vol. 12, no. 1/2012

tors, filters, event markers, data grouping,

zooming and others, which can be used out-

of-the-box with any type of chart.

The advantage of using a charting library is

that we can reuse logic which has already

been implemented, dramatically reducing the

time needed to present the results of our re-

search. Another advantage is that the library

is easy to use and compatible with all modern

web-browsers. It primarily uses Scalable

Vector Graphics (SVG) for rendering images

[25]. SVG is a specification of XML-based

file format for two-dimensional vector

graphics, both static and animated. With

SVG, images and their behavior are defined

in XML text files. This means that they can

be searched, indexed, and, if needed be com-

pressed. Also, as XML files, SVG images

can be created and edited on the fly, through

a scripting language, like JavaScript. SVG

creates powerful, dynamic content because it

tightly integrates front-end graphics to back-

end business processes and data including

corporate databases, and other rich sources of

information. SVG files use existing and

proven Web standards such as Cascading

Style Sheets (CSS) and Extensible Style

Sheet Language so that graphics can be easi-

ly customized. Moreover, the graphics creat-

ed in SVG can be scaled without loss of qual-

ity across various platforms and devices [26].

SVG enables Web developers and designers

to create dynamically generated, high-quality

graphics from any type of data with precise

structural and visual control. It can be used

on the Web, in print and even on portable

devices while retaining full quality.

The HighCharts takes full advantage of the

SVG technology to render the charts on the

client browser. This approach has benefits for

both the developers, by reducing the load on

the web server, and for end-users by dramati-

cally improving the user experience. Waiting

times to see high-quality graphics are re-

duced, since the images are constructed on

the fly on the client-machine. Zooming and

other operations are extremely fast because

data is resident on the client. Therefore, in-

teractivity is almost instantaneous since there

is no need to retrieve additional data from the

server.

On our web pages, the entropy data is re-

trieved only one time, when the page is load-

ed. Once this step being completed, there is

no other interaction with the web server. The

data is provided in JSON format, which

makes it easy to be loaded through JavaScript

by the charting library. Based on this data,

the library creates graphics which present the

intra-day evolution of the entropy values for

a certain stock. Another chart is provided

which presents the entropy values of all the

instruments traded on the Bucharest Stock

Exchange.

4 Methodology and interpretation

The intraday stock entropy
 is computed

solely based on the actual trading data:

a) number of transactions (generated exe-

cutions by the exchange matching en-

gine);

b) quantity executed per trade;

c) overall traded volume per symbol during

the day;

d) execution prices;

e) volume weighted average price.

From the above perspective, we can refer to

 entropy measure as intrinsic entropy of a

stock traded on exchange. There is no exoge-

nous factor to influence the level of entropy.

If there are external influences they are im-

bedded, already contained in the trading data

(volume, price, number of transactions), and

quantified as such fig 3 shows the intraday

evolution of the entropy for symbol SIF4,

during June 15, 2012. It can be seen that the

entropy evolution sustains the price variation,

the price staying during the day above the

open.

Economy Informatics vol. 12, no. 1/2012 13

Fig. 3. Entropy and price variation for symbol SIF4 on June 15, 2012

In the entropy model that we propose, the

probabilities represented by the fractions

(executed quantity of trade i, relative to the

overall executed quantity) seem to be

weighted with the price variation, in terms of

weighted entropy concept proposed by

Nawrocki and Harding. Our perspective is

slightly different though: we would rather in-

terpret these probabilities as degrees of con-

fidence that the market give for a certain

price level of the stock, and subsequently for

the price variation from the chosen reference

price. Furthermore, we need the entropy

 values not to be impacted by the price

level of a stock or another, and opted for the

relative price variation rather than the price

value itself, or the absolute variation from the

reference.

One of the particular features of this entropy

calculation is that it can generate both posi-

tive and negative values for the entropy. We

are still interested in the absolute value of the

entropy, but in context of an entropy measure

associated to a traded stock, allowing the en-

tropy to have negative values has the signifi-

cance of price decrease for the considered

stock, and consequently, the associated inter-

est of the market for rather selling it.

Taking the closing price of the previous day

as reference generated an evolution of entro-

py values over the trading day that was de-

coupled from the evolution of the price. For

example, as long as the execution prices dur-

ing the day are above the last closing price,

the entropy values continue to increase, re-

gardless the fact that the prices can actually

decrease over the day, from a high level in

the opening, but still stayed above the last

close. Similarly, the execution prices could

stay the entire day under the previous close,

while they were in fact going up from a low

opening price. Considering the opening price

as reference, or any other pegged value for

that matter, could generate a similar decou-

pling that we have mentioned between entro-

py evolution and price variation over the day.

As mentioned above, trading data is captured

from Bucharest Stock Exchange (BSE)

through a delayed data feed. At each fetch

(corresponding to t in
 entropy), the new

trades are appended to the already received

ones, and the value of entropy is recalculated

for each stock listed on the market. We envi-

sion this entropy model as measure of the

market confirmation for the movement of the

stock price into one direction or the other. In

other words, the intrinsic stock entropy

 should be higher, in absolute terms, if:

a) execution prices move consistently into a

certain direction (up or down) during the

day;

b) stock is heavily traded, as more transac-

14 Economy Informatics vol. 12, no. 1/2012

tions suggest a high interest of the mar-

ket in the considered stock, and the

higher number of transactions (states and

their associated probabilities) will sup-

port the direction of price evolution.

Coming back to the reference price, we con-

sider that a moving reference will reflect

most accurately the price change in the en-

tropy measure. The volume weighted average

price (VWAP), computed up to the consid-

ered trade, give the best indication for the di-

rection of price change with each executed

trade (state, in terms of Gibbs entropy).

Price variation (

 ̅
) provides both:

a) anchoring to the probability value;

b) direction for the trading activity of a giv-

en security, up to the point in time when

the entropy is computed.

Without the price variation weight, the sum

 ∑

 (

)

 is to be positive.

The price variation(

 ̅
) has the follow-

ing implications on the entropy
 , leaving

apart the associated probability for the price

change to occur:

a) if, preponderantly, (

 ̅
) then

there are chances for entropy to be posi-

tive,
 ;

b) if, preponderantly, (

 ̅
) then

there are chances for entropy to be nega-

tive,
 .

The value of the entropy
 is an indication

of the interest that the market (investors)

manifests, relative to security X, up to the

moment t. A higher entropy value, in abso-

lute terms, suggests a greater market interest

in a given security (either in buying or selling

it). Conversely, a lower absolute value of the

stock intrinsic entropy gives an indication re-

garding a lower interest of investors in the

considered security. Small or inexistent price

variation makes for (

 ̅
) to approach

zero, signifying a greater indetermination fig

4 shows the distribution of
 entropy at the

end of the day (June 15, 2012) for a selected

set of stocks listed on Bucharest Stock Ex-

change (BSE).

Fig. 4. Entropy distribution for a set of selected stocks listed on BSE, June 15, 2012

Economy Informatics vol. 12, no. 1/2012 15

5 Conclusions and further research

Summarizing, messaging is a very effective

means of building the abstraction layer with-

in SOA, needed to fully abstract a business

service (functionality) from its underlying

implementation. Through business messag-

ing, the business service does not need to be

concerned about where the corresponding

implementation service (say, the TES servlet)

is located, what language it is written in,

what platform it is deployed on, or even the

name of the implementation service. All the

above-mentioned elements have equally con-

stituted the reasons why we turned to Open

Message Queue (OpenMQ), as the open

source MOM implementation of JMS, for de-

signing the architecture for computing the in-

trinsic entropy of BSE listed stocks.

Our research has been conducted based on

the transactions executed on the Bucharest

Stock Exchange (BSE), and aimed to prove

that price variation weighted entropy can of-

fer a synthetic and readily computed indica-

tor, for evaluating direction and intensity of

trading activity. We are currently looking in-

to adapting the proposed model to compute

the stock entropy for a longer time frame: 3,

7, 15, 30, 60, 90 days. Although we consider

that this intrinsic entropy does not have much

relevance for extended time frames, having

given the relative low number of transactions

per day executed on BSE for each listed

stock, a longer period would provide more

data for supporting the more recent activity.

For example, even for intraday computed

entropy, it would make more sense to not

start from zero value at the beginning of trad-

ing day, but to carry over some market in-

formation from the previous day(s), with the

focus still on the most recent data, which we

consider to be more relevant for stock intrin-

sic entropy. We are also investigating wheth-

er
 entropy measure can provide a con-

sistent and reliable indication regarding the

direction of intraday price variation.

Our ongoing research project aims, at theo-

retical level to fully explore the implications

of the constituents of the proposed calcula-

tion of the intrinsic stock entropy and, at ap-

plicative level to integrate the entropic model

within a trading algorithm that could react

decisively, and in a timely fashion, to the

evolution of trading results.

References

[1] R. Frigg and C. Werndl, “Entropy – A

Guide for the Perplexed”, Probabilities

in Physics, Oxford University Press, Ox-

ford, 2010.

[2] E.T. Jaynes, C.R. Smith, G.J. Erickson,

“The Gibbs Paradox”, in Maximum En-

tropy and Bayesian Methods, Kluwer

Academic: Dordrecht, 1992, pp. 1–22.

[3] E.C. Shannon, “A Mathematical Theory

of Communication”, in Bell System

Technical Journal, vol. 27, pp. 379–423,

623-656, July, October 1948.

[4] G.R. Nicholas, “The Entropy Law and the

Economic Process”, Harvard University

Press, Cambridge, MA, USA, 1971.

[5] A. Horowitz and I. Horowitz, “The real

and illusory virtues of entropy-based

measures for business and economic

analysis”, Decision Science 7, 121-36,

1976.

[6] G. Philippatos and C. Wilson, “Entropy,

market risk and the selection of efficient

portfolios”, Applied Economics 4, 209-

20, 1972.

[7] G. Philippatos and C. Wilson, “Entropy,

market risk and the selection of efficient

portfolios: reply”, Applied Economics 6,

76-9, 1974.

[8] D. White, “Entropy, market risk and the

selection of efficient portfolios: com-

ment”, Applied Economics 6, 73-5,

1974.

[9] N.D. Nawrocki and H.W. Harding,

“State-value weighted entropy as a

measure of investment risk”, Applied

Economics, 1986, 18, pp. 411-419.

[10] G.S.L. Shackle, “Expectations in Eco-

nomics”, Cambridge University Press,

Cambridge, UK, 1952.

[11] C. Vinţe, I. Smeureanu, I.A. Lixandru,

“An Entropic Model for Equity Trading

Analysis”, in the Proceedings of The

Eleventh International Conference on In-

formatics in Economy IE 2012, Bucha-

rest, May 10-11, 2012.

16 Economy Informatics vol. 12, no. 1/2012

[12] E. Thomas “SOA Design Patterns”,

Prentice Hall by SOA Systems Inc., New

Jersey, NY, 2009.

[13] Sun Microsystems, Inc. - Open Message

Queue: Open Source Java Message Ser-

vice (JMS) - https://mq.dev.java.net/

[14] R. Mark, R. Monson-Haefel and A.D.

Chappell , “Java Message Service (Se-

cond Edition)”, O’Reilly Media Inc., Se-

bastopol, CA, 2009.

[15] C. Vinţe, ”Upon a Message-Oriented

Trading API”, Informatica Economica

Journal vol. 14, no. 1/2010.

[16] Bursa de Valori Bucureşti,

http://www.bvb.ro

[17]Web Service, http://en.wikipedia.org/

wiki/Web_service, retrieved June 14,

2012.

[18]WSDL, http://en.wikipedia.org/

wiki/Web_Services_Description_Langua

ge, retrieved on June 14, 2012.

[19] M. Kalin, ”Java Web Services: Up and

Running”, O’Reilly Media Inc.,

Sebastopol, CA, 2009.

[20] SOAP over Java Message Service 1.0,

W3C Recommendation,

http://www.w3.org/ SOAP Version 1.2,

W3C Recommendation, W3C, 2009.

[21]Sun Microsystems, Inc., Java Servlet 2.5

Maintenance Release 2 Specification,

2007.

[22] Sun Microsystems, Inc., Java Message

Service -

http://java.sun.com/products/jms/

[23] Sun Microsystems, Inc., Open Message

Queue: Open Source Java Message Ser-

vice (JMS) - https://mq.dev.java.net/

[24] HighCharts, http://www.highcharts.com/

products/highcharts, retrieved on June

16, 2012.

[25]SVG Zone, Adobe,

http://www.adobe.com/svg/overview/svg

.html, retrieved on June 16, 2012.

[26]Scalable Vector Graphics,

http://en.wikipedia.org/wiki/Scalable_Ve

ctor_Graphics, retrieved on June 16,

2012.

Claudiu VINŢE has over fifteen years of experience in the design and im-

plementation of software for equity trading systems and automatic trade pro-

cessing. In 2007 Claudiu co-founded Opteamsys Solutions, a software pro-

vider in the field of securities trading technology and equity markets analysis

tools. Previously, he was for over six years with Goldman Sachs in Tokyo,

Japan, as Senior Analyst within the Trading Technology Department. Clau-

diu's expertise in trading technologies also includes working in Tokyo with

Fusion System Japan, and Simplex Risk Management as Software Engineer, and Senior Soft-

ware Engineer, respectively. Since 2009, Claudiu has been given lectures and coordinated the

course and seminars upon The Informatics of the Equity Markets, within the Master’s program

organized by the Department of Economic Informatics. Claudiu graduated in 1994 The Facul-

ty of Cybernetics, Statistics and Economic Informatics, Department of Economic Informatics,

within The Bucharest Academy of Economic Studies. He holds a PhD in Economic Cybernet-

ics and Statistics from The Bucharest Academy of Economic Studies. His domains of interest

and research include combinatorial algorithms, middleware components, algorithmic trading

and web technologies for equity markets analysis.

Ion SMEUREANU has graduated the Faculty of Planning and Economic

Cybernetics in 1980, as promotion leader. He holds a PhD diploma in "Eco-

nomic Cybernetics" from 1992 and has a remarkable didactic activity since

1984 when he joined the staff of Bucharest Academy of Economic Studies.

Currently, he is a full Professor of Economic Informatics within the De-

partment of Economic Informatics and the dean of the Faculty of Cybernet-

ics, Statistics and Economic Informatics from the Academy of Economic

Studies. He is the author of more than 16 books and an impressive number of articles. He was

Economy Informatics vol. 12, no. 1/2012 17

also project director or member in many important research projects. He was awarded the Ni-

colae Georgescu-Roegen diploma, the award for the entire research activity offered by the

Romanian Statistics Society in 2007 and many others.

Ionuţ-Alexandru LIXANDRU graduated from the Bucharest Academy of

Economic Studies in 2008. He is a Ph.D. candidate in the field of Economic

Informatics at the Bucharest Academy of Economic Studies. Alexandru is

currently working at the Bucharest Stock Exchange, as a Software Developer

within the Trading System Development department. Previously he was for 5

years with TechTeam Global within the Global Business Applications de-

partment. His main areas of interest are system integrations, web technolo-

gies, and low-latency technologies for trading systems.

