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Workflow management systems play a central role in supporting the business operations of 
medium and large organizations. Because of this and the increasing complexity of the 
processes the properties of the languages used to describe those processes are becoming very 
important. This paper analyses the structural properties of the BWL process definition lan-
guage. It defines a new class of Petri nets called BWL networks and uses it to prove that the 
control flow of BWL programs is structurally sound. The design of the language ensures that 
the modeled processes are inherently free from common structural problems. 
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Introduction 
All modern businesses depend on com-

plex business processes in order to conduct 
their daily activities. These processes involve 
documents, people and internal or external 
information systems. Traditional task based 
systems support the user in performing spe-
cific tasks, but they fail to integrate all the 
aspects involved in a typical business 
process. In order to manage holistically the 
business processes running inside an organi-
zation a new class of information systems 
named Process Aware Information Systems 
(PAIS) are used. According to [3], process 
aware information systems are information 
systems that manage and execute operational 
processes involving people, applications, and 
/ or information sources on the basis of 
process models. 
In order to be executable inside a PAIS, a 
process must be described using a formal 
language. There are numerous process defini-
tion languages created by the industry or the 
academic community. The most important 
workflow languages are BPEL - Business 
Process Execution Language, BPMN - Busi-
ness Process Modeling Notation and Yet 
Another Workflow Language - YAWL. One 
of the main problems identified using those 
languages is the complexity burden imposed 
on the process designer ([2]). When using 
those languages, the process designer is re-
sponsible for ensuring that the process mod-
els created are free from structural problems 

like livelocks, deadlocks, dangling tasks and 
other similar issues. 
In [4], [5] a new process definition language 
called Business Workflow Language – BWL 
and the associated platform called DocuMen-
tor was introduced. In this paper is proven 
that the language design of BWL guarantees 
that process models written in it are free of 
structural errors. The proof is based on trans-
lating the BWL programs into corresponding 
specialized Petri nets called BWL Networks 
and demonstrating that the equivalent net is 
sound. 
 
2 Structural problems in existing 
workflow languages 
In order to illustrate the structural problems 
that can arise in modeling processes using the 
existing workflow nets we consider a set of 
process descriptions using the YAWL 
(adapted from [1]) and BPMN languages. 
The first example of a process considered is a 
simple insurance claim processing workflow. 
The process consists of five tasks: 
• recording the receipt for the claim (re-

ceipt); 
• the client’s policy is checked to determine 

its validity and confirm that it covers what 
has been claimed for (checkPolicy); 

• the claim is checked in to determine if it’s 
a legitimate one and the amount payable 
to the customer (checkClaim); 

• a rejection letter is sent to the customer if 
the verification tasks have found problems 

1 
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with the policy or the claim (sendLetter); 
• the amount determined in task checkClaim 

is paid to the customer if both the policy 
and the claim are found valid (pay). 

Tasks checkClaim and checkPolicy must be 
performed after the claim is registered (re-
ceipt) and can be performed either sequen-

tially or in parallel. The sendLetter task must 
be performed if the result of either checkPo-
licy or checkClaim is negative, otherwise the 
pay task must be executed. All process in-
stances must execute exactly four tasks: re-
ceipt, checkPolicy, checkClaim and one of 
sendLetter and pay. 

a)

 
b)

Fig. 1. BPMN (a) and YAWL (b) representation for the claim processing process 
 
Figure 1 shows the claim processing sample 
described using the BPMN and YAWL lan-
guages. Although the syntax is different, the 
overall structure and semantics are exactly 
the same and programs are equivalent. Both 
languages use a PETRI net like structure that 
allows the user to combine the routing con-
structs (OR split, AND split, OR join and 
AND join) in any way, without any checks at 
syntax level. At first sight, the process defini-
tions seem to accurately follow the process 
description. They execute the receipt task 
first and then the checkPolicy and check-
Claim tasks are executed in parallel. After 
the checks are made, the claim is sent to 
payment or a rejection letter is sent and the 
process ends. 
The combination of routing structures used in 

Figure 1 generates a series of problems. If 
both the checkClaim and checkPolicy tasks 
generate negative results then both p3 and p4 
places will receive a token. Because the sen-
dLetter contains an OR split the task will be 
executed twice and two letters will be sent to 
the customer. If the policy is not valid, but 
the claim is valid, then the places p3 and 
p6will receive a token. The sendLetter will 
execute correctly, but the pay task, being 
guarded by an AND join, will remain indefi-
nitely with a token in p6 waiting for another 
token in p5 to continue. A similar situation 
will arise if the policy is valid, but the claim 
is not valid. The only situation when the 
process is executed correctly is when both 
the claim and policy are valid. 
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a) 

 
b) 

 
c) 

 
d) 

 
Fig. 2. Structural problems examples using the YAWL language [1] 

 
The incorrect combination of routing struc-
tures in languages like BPMN and YAWL 
results in process definitions that contain 
evident or subtle structural problems. Men-
dling etal have shown in [6] that these errors 
are common and can be found frequently 
even in production code. In the paper is 
shown that from the 604 non-trivial process 
descriptions included in the SAP Reference 
Model at least 34 manifest structural control 
flow errors. Figure 2 shows four examples of 
process definitions that contain such errors. 
According to [1] these errors can be classi-
fied in six categories: 
1. Tasks without input and/or output places 
In Figure 2.a Task 4 has no input places and, 
because of this, the moment of execution 
can’t be determined. In the same example 
Task 5 has no places and its execution is un-
necessary for the completion of the process. 
2. Dead tasks 
Dead tasks are tasks that can never be com-

pleted because they can never accumulate the 
required tokens in their input places. Task 2 
from Figure 2.b can never be completed be-
cause the OR split from Task 1 can place on-
ly a token in one of its output places. The 
same applies for Task 3 in Figure 2.d. 
3. Deadlock 
A deadlock appears when the process can 
never be completed because is stuck waiting 
for tokens in some places. In Figure 2.b if the 
Task 1 places a token in one of its top two 
output places then the process will wait for-
ever for the execution of Task 2 to begin. The 
process can be finished successfully only if 
Task 1 places a token directly in the end 
place. 
4. Livelock 
A livelock occurs when the process can’t be 
completed because is trapped into an endless 
cycle. This can happen in processes that con-
tain iterative sections (like Tasks 2 and Task 
3 in Figure 2.c) that always place tokens in-
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side or before the loop before finishing. 
5. Activities still take place after the condi-
tion "end" is reached 
A correct process definition should complete 
when its end place is reached. This means 
that there should be exactly one token in the 
end place and no tokens elsewhere. In figure 
2.c Task 2 and Task 3 will have tokens in 
their input places and will be able to execute 
after the end place of the process is reached. 
6. Tokens remain in the process definition af-
ter the case has been completed 
If the process is completed as a result of the 
firing of Task 1 in Figure 2.d then there will 
remain a token in one of the places before 
Task 3. In this case it’s unclear when the 
process execution ends. 
These control flow errors are a direct result 
of the fact that the syntaxes of the analyzed 
process description languages don’t have any 
means to restrict the user to use only correct 
combinations of routing constructs. 
 
3. BWL Programs and Networks 
The BWL language ([4], [5]) avoids these 
types of errors by grouping the routing con-
structs in block structured control flow in-
structions. Unlike the graph-like structure 
used by BPMN and YAWL that allows any 
combination of routing constructs, BWL al-
lows only correct combinations. This is ac-
complished by grouping the routing con-
structs inside the control flow instructions 
like sequence, if, while, parallel and firstOf. 
The user selects only the high level control 
flow instructions, and the execution engine is 
responsible of generating the correct control 
routing constructs at the moment of execu-
tion. 
To illustrate the use of the control structures 
of the proposed language the claim insurance 
process from section 1 was rewritten using 
BWL. 

 
Fig. 3. BWL representation for the claim 

processing process 
 

The BWL implementation of the process re-
spects all the requirements presented in the 
process description. The sequence instruction 
ensures that the Receipt task is executed first. 
The parallel instruction executes its child 
tasks checkPolicy and checkClaim in parallel 
and continues only after both are completed. 
The if instruction executes exactly one of the 
tasks pay and sendLetter depending on the 
outcome of the checkPolicy and checkClaim 
tasks. In the BWL implementation the prob-
lems found in the processes from Figure 1 
are avoided.  
In order to evaluate the properties of BWL 
programs, a new class of Petri net called 
BWL Network is proposed. The BPNT algo-
rithm was created to translate the abstract 
syntax tree of a BWL program to an equiva-
lent BWL network for analysis. 
A BWL Network (BWL) is a touple 
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒), where: 
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• 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is a finite set of 
places; 

• 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}is a finite set of transi-
tions; 

• 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃)is the set of arcs; 
• 𝑡𝑡:𝑇 → 𝐵𝑁𝑇,𝐵𝑁𝑇 = {𝑆𝑖𝑚𝑝𝑙𝑒,

𝑆𝑒𝑞𝑆𝑡𝑎𝑟𝑡, 𝑆𝑒𝑞𝐸𝑛𝑑, 𝐼𝑓𝑇𝑟𝑢𝑒, 𝐼𝑓𝐹𝑎𝑙𝑠𝑒,
𝑊ℎ𝑖𝑙𝑒𝐵𝑒𝑔𝑖𝑛, 𝑊ℎ𝑖𝑙𝑒𝑇𝑟𝑢𝑒,
𝑊ℎ𝑖𝑙𝑒𝐹𝑎𝑙𝑠𝑒,
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑆𝑡𝑎𝑟𝑡,𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑛𝑑,
𝐹𝑖𝑟𝑠𝑡𝑂𝑓𝑆𝑡𝑎𝑟𝑡, 𝐹𝑖𝑟𝑠𝑡𝑂𝑓𝐸𝑛𝑑}is the 
function that maps a BWL type to each 
transition; 

• 𝑡𝑒:𝑇 → 𝐸𝑉, 𝐸𝑉 = {(𝑒1, 𝑒2, … , 𝑒𝑚)|0 ≤
𝑚 < 𝑛, 𝑒𝑖 ∈ {𝑖, 𝑒, 𝑐, 𝑓, 𝑡}}is the function 
that maps an event chain to each transi-
tion; 

• 𝑖𝑛 ∈ 𝑃 is the start place, where⋅ 𝑖𝑛 = ∅; 
• 𝑜𝑢𝑡 ∈ 𝑃 is the end place where 𝑜𝑢𝑡 ⋅=

∅; 
• all places and transitions are placed on a 

path from 𝑖𝑛 to 𝑜𝑢𝑡. 
Every activation of a transition 𝑡 ∈ 𝑇 gene-
rates a sequence of events 𝑒 ∈ 𝐸𝑉, where 
𝑒 = 𝑡𝑒(𝑡). A sequence 𝑡1, 𝑡2, … , 𝑡𝑛−1 ∈ 𝑇 for 
which 𝑡1 ∈ 𝑖𝑛 ⋅ și 𝑡𝑛−1 ∈⋅ 𝑜𝑢𝑡 generates an 
event sequence 𝑒 = ⋃ 𝑡𝑒(𝑡𝑖)𝑛−1

𝑖=1  called the 
execution trace of the program. 
In order to evaluate the structural properties 
of a BWL program using BWL nets, an algo-
rithm named BPNT (BWL Program to Net 
Transformer) was created. It maps the ab-
stract syntax tree of any BWL program to its 
equivalent BWLN. An equivalent BWLN for 
a BWL program is a net 
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)with the property that 
any execution trace𝑒 ∈ 𝐸𝑅𝐵follows the se-
mantic rules of the BWL language. 
The BPNT algorithm starts with a BWL 
program 𝑃𝐵 = (𝐴, 𝑡𝑦𝑝𝑒, 𝑐)and builds an 
equivalent BWLN𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒) us-
ing the following steps: 
Step 1:  

Let 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)be a 
BWLNwith 𝑃 = {𝑖𝑛,𝑜𝑢𝑡}, 𝑇 = {𝑡0}, 
  𝐹 = {(𝑖𝑛, 𝑡0),
  𝑡0,𝑜𝑢𝑡,  𝑡𝑦𝑝𝑒𝑡0=𝑆𝑖𝑚𝑝𝑙𝑒and 
𝑃𝐵 = (𝐴, 𝑡𝑦𝑝𝑒, 𝑐)the source BWL 
program. 
Let𝑆𝐴𝑐𝑡 = ∅be an empty stack with 

the following element structure: (𝐴𝑖 ∈ 𝐴, 𝑡 ∈
𝑇).  
Step 2: 

The initial element (𝐴1, 𝑡0) is added 
to the 𝑆𝐴𝑐𝑡stack. 
Step 3: 

While 𝑆𝐴𝑐𝑡 ≠ ∅ steps 4 – 7 are ex-
ecuted. 
Step 4: 

We extract the top element 
(𝐴𝑐𝑟𝑡, 𝑡𝑐𝑟𝑡)from 𝑆𝐴𝑐𝑡. Transition 
𝑡𝑐𝑟𝑡is replaced with the subnet cor-
responding to the 𝐴𝑐𝑟𝑡 statement. 

Step 5: 
A temporary BWLN called 
𝑅𝐵𝑡𝑚𝑝composed of𝑃𝑡𝑚𝑝, 𝑇𝑡𝑚𝑝, 𝐹𝑡𝑚𝑝 
and 𝑡𝑡𝑡𝑚𝑝is created for the activity 
𝐴𝑐𝑟𝑡. 

Step 6: 
The current transition from 𝑅𝐵 is re-
placed by the subnet generated at step 
5 using the following operations: 
𝑃 = 𝑃 ∪ (𝑃𝑡𝑚𝑝 \ {𝑖𝑛, 𝑜𝑢𝑡}), 𝑇 =
𝑇 \�𝑡𝑡𝑚𝑝� ∪ 𝑇𝑡𝑚𝑝, 𝐹 = 𝐹\{(∗
, 𝑡𝑐𝑟𝑡, (∗, 𝑡𝑐𝑟𝑡)}∪𝐹𝑡𝑚𝑝 and 
𝑡𝑡 = 𝑡𝑡 ∪ 𝑡𝑡_𝑡𝑚𝑝. 

Step 7: 
For each activity 𝐴𝑗 ∈ {𝐴𝑖 ∈
𝑐(𝐴𝑐𝑟𝑡)|𝑡𝑦𝑝𝑒(𝐴𝑖) ≠ 𝑆𝑖𝑚𝑝𝑙𝑒}a new 
element �𝐴𝑗, 𝑡𝑗�is added to 𝑆𝐴𝑐𝑡, 
where𝑡𝑗 ∈ 𝑇𝑡𝑚𝑝 is the transition gen-
erated by step 5 corresponding to ac-
tivity 𝐴𝑗. 

Construction of the sets is step 5 is done ac-
cording to the semantic of each BWL state-
ment. Figure 4 shows the mapping used for 
the BWL control flow statements.
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a) Sequence statement 

A1

Seq

An
...

t1 tnSeqStart SeqEnd...
in

 
 
b) If statement 

A1

If

A2

IfTrue

IfFalse t2

t1

outin

 
 
c) While statement 

A1

While WTrue

WFalse

t1

outin

WBegin

 
 
d) Parallel statement 

 
e) FirstOf statement 

A1

FirstOf

An
...

t1

tn

FStart FEnd...
in out

 
Fig. 4. Corresponding BWL networks for the BWL control flow statements 
 

The BPNT algorithm works on the abstract 
syntax tree obtained by applying the BWL 
grammar [4] to the program. Figure 5 shows 

the abstract syntax tree obtained for the in-
surance claim process presented in Figure 3 

A1

Parallel

An
...

t1

tn

PStart PEnd...
in out
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. 
Fig. 5. Abstract syntax tree for the BWL claim processing process 

 
The abstract syntax tree (figure 5) was con-
verted to the equivalent BWL network using 
the BPNT algorithm. 

Figure 6 shows the resulting BWL network 
and the program state after each algorithm 
iteration. 

 

 

 
Fig. 6. BPNT algorithm application 
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The BWLN obtained after applying the algo-
rithm to the abstract syntax tree represents 
accurately the behavior of the BWL program. 
The network can be used to analyze the 
structural properties of the program. 
 
3 Soundness in BWL networks 
In order to analyze the structural properties 
of BWL programs the notion of soundness 
was defined for BWL nets. According to [3], 
if the BWL network is sound then the 
equivalent BWL program is free of structural 
errors. 
A BWL program with the equivalent BWL 
network 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡𝑦𝑝𝑒)is sound if 
and only if it meets the following three con-
ditions: 
• SC1: ∀𝑀(𝑠𝑖𝑛

∗
→𝑀) => (𝑀

∗
→ 𝑠𝑜𝑢𝑡) 

(for any place accessible from the initial 
state there is an activation sequence that 
leads the system to the final state 𝑠𝑜𝑢𝑡); 

• SC2: 
∀𝑀(𝑠𝑖𝑛
∗
→𝑀⋀𝑀 ≥ 𝑠𝑜𝑢𝑡) => 𝑀 = 𝑠𝑜𝑢𝑡) (the 
only state accessible from the initial state 
that contains a token in the final state is 
𝑠𝑜𝑢𝑡); 

• SC3: 
∀𝑡 ∈ 𝑇𝑡ℎ𝑒𝑟𝑒𝑎𝑟𝑒𝑀 𝑎𝑛𝑑 𝑀′𝑤𝑖𝑡ℎ𝑠𝑖𝑛

∗
→ 𝑀

𝑡
→𝑀′ (there are no dead transitions in the 
𝑡 state). 

Mathias Weske has shown in [7] that the 
soundness problem for WF nets is decidable 

in polynomial time for free choice nets. A 
similar extension technique was used to 
prove that all BWLNs built using the BPNT 
algorithm are sound. It was shown the rela-
tionship between the liveness and boundness 
properties of the extended net and the sound-
ness property and the fact that the networks 
built using BPNT respect those properties. 
If 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is a BWLN, then the 
net 𝑅𝐵𝑒𝑥𝑡 = (𝑃,𝑇𝑒𝑥𝑡,𝐹𝑒𝑥𝑡, 𝑡𝑡𝑒𝑥𝑡 , 𝑡𝑒), where 
𝑇𝑒𝑥𝑡 = 𝑇 ∪ {𝑡𝑒𝑥𝑡}, 
𝐹𝑒𝑥𝑡 = 𝐹 ∪ {(𝑡𝑒𝑥𝑡 , 𝑖𝑛), (𝑜𝑢𝑡, 𝑡𝑒𝑥𝑡)} and 
𝑡𝑡𝑒𝑥𝑡 = 𝑡𝑡 ∪ {(𝑡𝑒𝑥𝑡 ,𝑆𝑖𝑚𝑝𝑙𝑒)} is called the 
extended BWL network. The following 
propositions were proved for BWL networks: 
Proposition 1: If the extended net 𝑅𝐵𝑒𝑥𝑡 =
(𝑃,𝑇𝑒𝑥𝑡,𝐹𝑒𝑥𝑡, 𝑡𝑡𝑒𝑥𝑡, 𝑡𝑒)is live and bounded 
then the original net 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is 
sound. 
Proposition 2: If the 𝑅𝐵is a sound net then 
the extended net 𝑅𝐵𝑒𝑥𝑡is bounded. 
Proposition 3: If the 𝑅𝐵 is a sound net then 
the extended net 𝑅𝐵𝑒𝑥𝑡 is live. 
Theorem 1: A BWL net 
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is sound if and only if 
the extended net 𝑅𝐵𝑒𝑥𝑡 = (𝑃,𝑇 ′,𝐹 ′, 𝑡𝑡 ′, 𝑡𝑒)is 
live and bounded. 
The proof for theorem 1 results directly from 
propositions 1-3. Using the theorem it was 
proved that all subnets used in the BPNT step 
5 of the algorithm are sound. For exemplifi-
cation we consider the case of the subnet cor-
responding to the while statement (Figure 2). 

 

 
Fig. 7. Extended BWLN and reachability graph for the while statement 

 
Let 𝑅𝐵𝑡𝑚𝑝 be the BWLN for the while 
statement and 𝑅𝐵𝑒𝑥𝑡the extended net.Each of 
𝑊𝐵𝑒𝑔𝑖𝑛,𝑊𝑇𝑟𝑢𝑒,𝑊𝐹𝑎𝑙𝑠𝑒, 𝑡1 𝑎𝑛𝑑 𝑡𝑒𝑥𝑡tran-

sitions uses one token and generates exactly 
one token as output. The total number of to-
kens inside the net is constant. The initial 

W True

W False

t1

out

W Begin

text

in p1

p2
(1 ,0 ,0 ,0)

(0 ,1 ,0 ,0)

(0 ,0 ,0 ,1)

(0 ,0 ,1 ,0)

Valid  transition : W Begin

Valid  transition : text

Va lid  transitions : W fa lse , W True

Valid  transition : t1
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state contains exactly one token, so the total 
number of tokens inside the net is 1 for any 
possible state. The extended net 𝑅𝐵𝑒𝑥𝑡 is 
bounded with 𝑘 = 1. From the reachability 
graph (figure 2) results that for every reacha-
ble state M and every transition t there is a 
state reachable from M that enables t, so the 
subnet is live. Because the 𝑅𝐵𝑡𝑚𝑝 is live and 
bounded it is also sound. 
Theorem 2: If 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒) and 
𝑅𝐵𝑡𝑚𝑝 = �𝑃𝑡𝑚𝑝, 𝑇𝑡𝑚𝑝, 𝐹𝑡𝑚𝑝, 𝑡𝑡𝑡𝑚𝑝, 𝑡𝑒𝑡𝑚𝑝�  
are two sound BWL networks then the 𝑅𝐵𝑓𝑖𝑛 
network build by replacing the 𝑡𝑥 transition 
from 𝑅𝐵 with the 𝑅𝐵𝑡𝑚𝑝 subnet following 
step 5 from the BPNT algorithm is a viable 
network. 
Let 𝑖𝑛𝑡𝑚𝑝 and 𝑜𝑢𝑡𝑡𝑚𝑝 be the initial and final 
states for the 𝑅𝐵𝑡𝑚𝑝 net. From SC1 𝑅𝐵𝑡𝑚𝑝 
there is a firing sequence 𝜎𝑡𝑚𝑝 =
(𝑡1, 𝑡2, … , 𝑡𝑛) with 𝑡𝑖 ∈ 𝑇 for which sin𝑡𝑚𝑝
𝜎𝑡𝑚𝑝�⎯⎯� 𝑠𝑜𝑢𝑡𝑡𝑚𝑝 . From SC3 we know that firing 
the sequence 𝜎𝑡𝑚𝑝 in 𝐵𝑇𝑓𝑖𝑛 is the same as fir-
ing transition 𝑡𝑥 in 𝐵𝑇. The operation move a 
token from location 𝑖𝑛𝑡𝑚𝑝 to location 
𝑜𝑢𝑡𝑡𝑚𝑝. 
Let 𝑀 be a state accessible from the initial 
state of 𝑅𝐵𝑓𝑖𝑛. If 𝑀 doesn’t contain tokens in 
one of the locations from 𝑃𝑡𝑚𝑝, then a se-
quence can be built that brings the system 
from state 𝑀 in state 𝑠𝑜𝑢𝑡 by replacing 
transaction 𝑡𝑥 (if necessary) from the se-
quence obtained from SC1 applied on 𝑅𝐵 
with the 𝜎𝑡𝑚𝑝 sequence. If 𝑀 contains tokens 
id one of the locations from 𝑃𝑡𝑚𝑝 then  a se-
quence 𝜎𝑀𝑓𝑖𝑛 to bring the system in state 
𝑠𝑜𝑢𝑡 can be built using the following rules: 
• we build a state 𝑀𝑡𝑚𝑝 for 𝐵𝑇𝑡𝑚𝑝 by taking 

the tokens corresponding to locations 
from 𝑃𝑡𝑚𝑝 from state 𝑀; because 𝐵𝑇𝑡𝑚𝑝 is 
sound we have a sequence 𝜎𝑀𝑡𝑚𝑝   which 
brings the system in 𝑠𝑜𝑢𝑡𝑡𝑚𝑝; 

• using the definition we have a sequence 
𝜎𝑀 that brings 𝐵𝑇 from state 𝑀 to state 
𝑠𝑜𝑢𝑡 ; 

• we build the sequence 𝜎𝑀𝑓𝑖𝑛 = 𝜎𝑀𝑡𝑚𝑝 ∪
𝜎𝑀 which brings 𝐵𝑇𝑓𝑖𝑛 from state 𝑀 to 
state 𝑜𝑢𝑡. 

The condition SC1 is satisfied. The same 
rules can be used to prove condition SC3. 
Let 𝑀 be a state of 𝐵𝑇𝑓𝑖𝑛 with 𝑀 ≥ 𝑠𝑜𝑢𝑡 and 
𝜎𝑓𝑖𝑛 a sequence that brings the system from 
state 𝑠𝑖𝑛 to state 𝑀. If 𝜎𝑓𝑖𝑛 doesn’t contain 
transitions from 𝑇𝑡𝑚𝑝 then 𝑀 = 𝑠𝑜𝑢𝑡 (using 
SC3). If 𝜎𝑓𝑖𝑛 contains a sequence from 
𝑇𝑡𝑚𝑝 let 𝑀0 be the state of 𝐵𝑇𝑓𝑖𝑛 before the 
first transition of the sequence and 𝑀1 the 
state after the last transition. Let 𝑀 be a state 
of 𝐵𝑇𝑓𝑖𝑛 with 𝑀 ≥ 𝑠𝑜𝑢𝑡 and 𝜎𝑓𝑖𝑛 a sequence 
that leads the system from state 𝑠𝑖𝑛 to state 
𝑀. If 𝜎𝑓𝑖𝑛 doesn’t contain transitions from 
𝑇𝑡𝑚𝑝, then 𝑀 = 𝑠𝑜𝑢𝑡 by SC3. If 𝜎𝑓𝑖𝑛 con-
tains a sequence from 𝑇𝑡𝑚𝑝 then let 𝑀0 be the 
state of 𝐵𝑇𝑓𝑖𝑛 before the first transition of the 
sequence and 𝑀1 the state after the last tran-
sition of the sequence. Using SC2 on 𝐵𝑇𝑡𝑚𝑝 
we have 𝑀0�𝑖𝑛𝑡𝑚𝑝� = 1,𝑀0�𝑜𝑢𝑡𝑡𝑚𝑝� = 0 
and 𝑀1�𝑖𝑛𝑡𝑚𝑝� = 0,𝑀1�𝑜𝑢𝑡𝑡𝑚𝑝� = 1. The 
sequence 𝜎𝑓𝑖𝑛 for 𝐵𝑇𝑓𝑖𝑛 is equivalent with cu 
sequence 𝜎 for 𝐵𝑇 obtained by replacing the 
transitions from 𝑇𝑡𝑚𝑝 with the transition 𝑡𝑥. 
Using SC2 we have 𝑀 = 𝑜𝑢𝑡,so SC2 is satis-
fied. Because all three conditions for the 
𝐵𝑇𝑓𝑖𝑛 are satisfied the net is sound. 
Using theorem 2 and the properties of the 
subnets corresponding to the BWL state-
ments it was proved that any BWT net ob-
tained using the BPNT algorithm is sound. 
Because the algorithm is able to map any 
BWL program to the equivalent BWLN, all 
BWL programs are unaffected by structural 
problems. 
 
4 Conclusions 
Business processes modeled using workflow 
languages are increasingly complex. Because 
those process models are executed automati-
cally by the system and have an immediate 
impact on the business it’s critical to ensure 
that the models are correct. In [2] and [6] it’s 
shown that process size, complexity and tools 
used have an important impact on process de-
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finition. Because BWL programs are proved 
to be sound, designers can use the language 
to express complex processes correctly, 
without worrying about the structural prob-
lems that might appear. 
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