
Economy Informatics, vol. 11, no. 1/2011

142

Analytic Evaluation of BWL Nets

Cristian IONITĂ
Academy of Economic Studies, Bucharest, Romania

crionita@ie.ase.ro

Workflow management systems play a central role in supporting the business operations of
medium and large organizations. Because of this and the increasing complexity of the
processes the properties of the languages used to describe those processes are becoming very
important. This paper analyses the structural properties of the BWL process definition lan-
guage. It defines a new class of Petri nets called BWL networks and uses it to prove that the
control flow of BWL programs is structurally sound. The design of the language ensures that
the modeled processes are inherently free from common structural problems.
Keywords: BWL, Workflow, Petri Nets, Evaluation, Open System

Introduction
All modern businesses depend on com-

plex business processes in order to conduct
their daily activities. These processes involve
documents, people and internal or external
information systems. Traditional task based
systems support the user in performing spe-
cific tasks, but they fail to integrate all the
aspects involved in a typical business
process. In order to manage holistically the
business processes running inside an organi-
zation a new class of information systems
named Process Aware Information Systems
(PAIS) are used. According to [3], process
aware information systems are information
systems that manage and execute operational
processes involving people, applications, and
/ or information sources on the basis of
process models.
In order to be executable inside a PAIS, a
process must be described using a formal
language. There are numerous process defini-
tion languages created by the industry or the
academic community. The most important
workflow languages are BPEL - Business
Process Execution Language, BPMN - Busi-
ness Process Modeling Notation and Yet
Another Workflow Language - YAWL. One
of the main problems identified using those
languages is the complexity burden imposed
on the process designer ([2]). When using
those languages, the process designer is re-
sponsible for ensuring that the process mod-
els created are free from structural problems

like livelocks, deadlocks, dangling tasks and
other similar issues.
In [4], [5] a new process definition language
called Business Workflow Language – BWL
and the associated platform called DocuMen-
tor was introduced. In this paper is proven
that the language design of BWL guarantees
that process models written in it are free of
structural errors. The proof is based on trans-
lating the BWL programs into corresponding
specialized Petri nets called BWL Networks
and demonstrating that the equivalent net is
sound.

2 Structural problems in existing
workflow languages
In order to illustrate the structural problems
that can arise in modeling processes using the
existing workflow nets we consider a set of
process descriptions using the YAWL
(adapted from [1]) and BPMN languages.
The first example of a process considered is a
simple insurance claim processing workflow.
The process consists of five tasks:
• recording the receipt for the claim (re-

ceipt);
• the client’s policy is checked to determine

its validity and confirm that it covers what
has been claimed for (checkPolicy);

• the claim is checked in to determine if it’s
a legitimate one and the amount payable
to the customer (checkClaim);

• a rejection letter is sent to the customer if
the verification tasks have found problems

1

Economy Informatics, vol. 11, no. 1/2011

143

with the policy or the claim (sendLetter);
• the amount determined in task checkClaim

is paid to the customer if both the policy
and the claim are found valid (pay).

Tasks checkClaim and checkPolicy must be
performed after the claim is registered (re-
ceipt) and can be performed either sequen-

tially or in parallel. The sendLetter task must
be performed if the result of either checkPo-
licy or checkClaim is negative, otherwise the
pay task must be executed. All process in-
stances must execute exactly four tasks: re-
ceipt, checkPolicy, checkClaim and one of
sendLetter and pay.

a)

b)

Fig. 1. BPMN (a) and YAWL (b) representation for the claim processing process

Figure 1 shows the claim processing sample
described using the BPMN and YAWL lan-
guages. Although the syntax is different, the
overall structure and semantics are exactly
the same and programs are equivalent. Both
languages use a PETRI net like structure that
allows the user to combine the routing con-
structs (OR split, AND split, OR join and
AND join) in any way, without any checks at
syntax level. At first sight, the process defini-
tions seem to accurately follow the process
description. They execute the receipt task
first and then the checkPolicy and check-
Claim tasks are executed in parallel. After
the checks are made, the claim is sent to
payment or a rejection letter is sent and the
process ends.
The combination of routing structures used in

Figure 1 generates a series of problems. If
both the checkClaim and checkPolicy tasks
generate negative results then both p3 and p4
places will receive a token. Because the sen-
dLetter contains an OR split the task will be
executed twice and two letters will be sent to
the customer. If the policy is not valid, but
the claim is valid, then the places p3 and
p6will receive a token. The sendLetter will
execute correctly, but the pay task, being
guarded by an AND join, will remain indefi-
nitely with a token in p6 waiting for another
token in p5 to continue. A similar situation
will arise if the policy is valid, but the claim
is not valid. The only situation when the
process is executed correctly is when both
the claim and policy are valid.

Economy Informatics, vol. 11, no. 1/2011

144

a)

b)

c)

d)

Fig. 2. Structural problems examples using the YAWL language [1]

The incorrect combination of routing struc-
tures in languages like BPMN and YAWL
results in process definitions that contain
evident or subtle structural problems. Men-
dling etal have shown in [6] that these errors
are common and can be found frequently
even in production code. In the paper is
shown that from the 604 non-trivial process
descriptions included in the SAP Reference
Model at least 34 manifest structural control
flow errors. Figure 2 shows four examples of
process definitions that contain such errors.
According to [1] these errors can be classi-
fied in six categories:
1. Tasks without input and/or output places
In Figure 2.a Task 4 has no input places and,
because of this, the moment of execution
can’t be determined. In the same example
Task 5 has no places and its execution is un-
necessary for the completion of the process.
2. Dead tasks
Dead tasks are tasks that can never be com-

pleted because they can never accumulate the
required tokens in their input places. Task 2
from Figure 2.b can never be completed be-
cause the OR split from Task 1 can place on-
ly a token in one of its output places. The
same applies for Task 3 in Figure 2.d.
3. Deadlock
A deadlock appears when the process can
never be completed because is stuck waiting
for tokens in some places. In Figure 2.b if the
Task 1 places a token in one of its top two
output places then the process will wait for-
ever for the execution of Task 2 to begin. The
process can be finished successfully only if
Task 1 places a token directly in the end
place.
4. Livelock
A livelock occurs when the process can’t be
completed because is trapped into an endless
cycle. This can happen in processes that con-
tain iterative sections (like Tasks 2 and Task
3 in Figure 2.c) that always place tokens in-

Economy Informatics, vol. 11, no. 1/2011

145

side or before the loop before finishing.
5. Activities still take place after the condi-
tion "end" is reached
A correct process definition should complete
when its end place is reached. This means
that there should be exactly one token in the
end place and no tokens elsewhere. In figure
2.c Task 2 and Task 3 will have tokens in
their input places and will be able to execute
after the end place of the process is reached.
6. Tokens remain in the process definition af-
ter the case has been completed
If the process is completed as a result of the
firing of Task 1 in Figure 2.d then there will
remain a token in one of the places before
Task 3. In this case it’s unclear when the
process execution ends.
These control flow errors are a direct result
of the fact that the syntaxes of the analyzed
process description languages don’t have any
means to restrict the user to use only correct
combinations of routing constructs.

3. BWL Programs and Networks
The BWL language ([4], [5]) avoids these
types of errors by grouping the routing con-
structs in block structured control flow in-
structions. Unlike the graph-like structure
used by BPMN and YAWL that allows any
combination of routing constructs, BWL al-
lows only correct combinations. This is ac-
complished by grouping the routing con-
structs inside the control flow instructions
like sequence, if, while, parallel and firstOf.
The user selects only the high level control
flow instructions, and the execution engine is
responsible of generating the correct control
routing constructs at the moment of execu-
tion.
To illustrate the use of the control structures
of the proposed language the claim insurance
process from section 1 was rewritten using
BWL.

Fig. 3. BWL representation for the claim

processing process

The BWL implementation of the process re-
spects all the requirements presented in the
process description. The sequence instruction
ensures that the Receipt task is executed first.
The parallel instruction executes its child
tasks checkPolicy and checkClaim in parallel
and continues only after both are completed.
The if instruction executes exactly one of the
tasks pay and sendLetter depending on the
outcome of the checkPolicy and checkClaim
tasks. In the BWL implementation the prob-
lems found in the processes from Figure 1
are avoided.
In order to evaluate the properties of BWL
programs, a new class of Petri net called
BWL Network is proposed. The BPNT algo-
rithm was created to translate the abstract
syntax tree of a BWL program to an equiva-
lent BWL network for analysis.
A BWL Network (BWL) is a touple
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒), where:

Economy Informatics, vol. 11, no. 1/2011

146

• 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is a finite set of
places;

• 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}is a finite set of transi-
tions;

• 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃)is the set of arcs;
• 𝑡𝑡:𝑇 → 𝐵𝑁𝑇,𝐵𝑁𝑇 = {𝑆𝑖𝑚𝑝𝑙𝑒,

𝑆𝑒𝑞𝑆𝑡𝑎𝑟𝑡, 𝑆𝑒𝑞𝐸𝑛𝑑, 𝐼𝑓𝑇𝑟𝑢𝑒, 𝐼𝑓𝐹𝑎𝑙𝑠𝑒,
𝑊ℎ𝑖𝑙𝑒𝐵𝑒𝑔𝑖𝑛, 𝑊ℎ𝑖𝑙𝑒𝑇𝑟𝑢𝑒,
𝑊ℎ𝑖𝑙𝑒𝐹𝑎𝑙𝑠𝑒,
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑆𝑡𝑎𝑟𝑡,𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐸𝑛𝑑,
𝐹𝑖𝑟𝑠𝑡𝑂𝑓𝑆𝑡𝑎𝑟𝑡, 𝐹𝑖𝑟𝑠𝑡𝑂𝑓𝐸𝑛𝑑}is the
function that maps a BWL type to each
transition;

• 𝑡𝑒:𝑇 → 𝐸𝑉, 𝐸𝑉 = {(𝑒1, 𝑒2, … , 𝑒𝑚)|0 ≤
𝑚 < 𝑛, 𝑒𝑖 ∈ {𝑖, 𝑒, 𝑐, 𝑓, 𝑡}}is the function
that maps an event chain to each transi-
tion;

• 𝑖𝑛 ∈ 𝑃 is the start place, where⋅ 𝑖𝑛 = ∅;
• 𝑜𝑢𝑡 ∈ 𝑃 is the end place where 𝑜𝑢𝑡 ⋅=

∅;
• all places and transitions are placed on a

path from 𝑖𝑛 to 𝑜𝑢𝑡.
Every activation of a transition 𝑡 ∈ 𝑇 gene-
rates a sequence of events 𝑒 ∈ 𝐸𝑉, where
𝑒 = 𝑡𝑒(𝑡). A sequence 𝑡1, 𝑡2, … , 𝑡𝑛−1 ∈ 𝑇 for
which 𝑡1 ∈ 𝑖𝑛 ⋅ și 𝑡𝑛−1 ∈⋅ 𝑜𝑢𝑡 generates an
event sequence 𝑒 = ⋃ 𝑡𝑒(𝑡𝑖)𝑛−1

𝑖=1 called the
execution trace of the program.
In order to evaluate the structural properties
of a BWL program using BWL nets, an algo-
rithm named BPNT (BWL Program to Net
Transformer) was created. It maps the ab-
stract syntax tree of any BWL program to its
equivalent BWLN. An equivalent BWLN for
a BWL program is a net
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)with the property that
any execution trace𝑒 ∈ 𝐸𝑅𝐵follows the se-
mantic rules of the BWL language.
The BPNT algorithm starts with a BWL
program 𝑃𝐵 = (𝐴, 𝑡𝑦𝑝𝑒, 𝑐)and builds an
equivalent BWLN𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒) us-
ing the following steps:
Step 1:

Let 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)be a
BWLNwith 𝑃 = {𝑖𝑛,𝑜𝑢𝑡}, 𝑇 = {𝑡0},
 𝐹 = {(𝑖𝑛, 𝑡0),
 𝑡0,𝑜𝑢𝑡, 𝑡𝑦𝑝𝑒𝑡0=𝑆𝑖𝑚𝑝𝑙𝑒and
𝑃𝐵 = (𝐴, 𝑡𝑦𝑝𝑒, 𝑐)the source BWL
program.
Let𝑆𝐴𝑐𝑡 = ∅be an empty stack with

the following element structure: (𝐴𝑖 ∈ 𝐴, 𝑡 ∈
𝑇).
Step 2:

The initial element (𝐴1, 𝑡0) is added
to the 𝑆𝐴𝑐𝑡stack.
Step 3:

While 𝑆𝐴𝑐𝑡 ≠ ∅ steps 4 – 7 are ex-
ecuted.
Step 4:

We extract the top element
(𝐴𝑐𝑟𝑡, 𝑡𝑐𝑟𝑡)from 𝑆𝐴𝑐𝑡. Transition
𝑡𝑐𝑟𝑡is replaced with the subnet cor-
responding to the 𝐴𝑐𝑟𝑡 statement.

Step 5:
A temporary BWLN called
𝑅𝐵𝑡𝑚𝑝composed of𝑃𝑡𝑚𝑝, 𝑇𝑡𝑚𝑝, 𝐹𝑡𝑚𝑝
and 𝑡𝑡𝑡𝑚𝑝is created for the activity
𝐴𝑐𝑟𝑡.

Step 6:
The current transition from 𝑅𝐵 is re-
placed by the subnet generated at step
5 using the following operations:
𝑃 = 𝑃 ∪ (𝑃𝑡𝑚𝑝 \ {𝑖𝑛, 𝑜𝑢𝑡}), 𝑇 =
𝑇 \�𝑡𝑡𝑚𝑝� ∪ 𝑇𝑡𝑚𝑝, 𝐹 = 𝐹\{(∗
, 𝑡𝑐𝑟𝑡, (∗, 𝑡𝑐𝑟𝑡)}∪𝐹𝑡𝑚𝑝 and
𝑡𝑡 = 𝑡𝑡 ∪ 𝑡𝑡_𝑡𝑚𝑝.

Step 7:
For each activity 𝐴𝑗 ∈ {𝐴𝑖 ∈
𝑐(𝐴𝑐𝑟𝑡)|𝑡𝑦𝑝𝑒(𝐴𝑖) ≠ 𝑆𝑖𝑚𝑝𝑙𝑒}a new
element �𝐴𝑗, 𝑡𝑗�is added to 𝑆𝐴𝑐𝑡,
where𝑡𝑗 ∈ 𝑇𝑡𝑚𝑝 is the transition gen-
erated by step 5 corresponding to ac-
tivity 𝐴𝑗.

Construction of the sets is step 5 is done ac-
cording to the semantic of each BWL state-
ment. Figure 4 shows the mapping used for
the BWL control flow statements.

Economy Informatics, vol. 11, no. 1/2011

147

a) Sequence statement

A1

Seq

An
...

t1 tnSeqStart SeqEnd...
in

b) If statement

A1

If

A2

IfTrue

IfFalse t2

t1

outin

c) While statement

A1

While WTrue

WFalse

t1

outin

WBegin

d) Parallel statement

e) FirstOf statement

A1

FirstOf

An
...

t1

tn

FStart FEnd...
in out

Fig. 4. Corresponding BWL networks for the BWL control flow statements

The BPNT algorithm works on the abstract
syntax tree obtained by applying the BWL
grammar [4] to the program. Figure 5 shows

the abstract syntax tree obtained for the in-
surance claim process presented in Figure 3

A1

Parallel

An
...

t1

tn

PStart PEnd...
in out

Economy Informatics, vol. 11, no. 1/2011

148

.
Fig. 5. Abstract syntax tree for the BWL claim processing process

The abstract syntax tree (figure 5) was con-
verted to the equivalent BWL network using
the BPNT algorithm.

Figure 6 shows the resulting BWL network
and the program state after each algorithm
iteration.

Fig. 6. BPNT algorithm application

Economy Informatics, vol. 11, no. 1/2011

149

The BWLN obtained after applying the algo-
rithm to the abstract syntax tree represents
accurately the behavior of the BWL program.
The network can be used to analyze the
structural properties of the program.

3 Soundness in BWL networks
In order to analyze the structural properties
of BWL programs the notion of soundness
was defined for BWL nets. According to [3],
if the BWL network is sound then the
equivalent BWL program is free of structural
errors.
A BWL program with the equivalent BWL
network 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡𝑦𝑝𝑒)is sound if
and only if it meets the following three con-
ditions:
• SC1: ∀𝑀(𝑠𝑖𝑛

∗
→𝑀) => (𝑀

∗
→ 𝑠𝑜𝑢𝑡)

(for any place accessible from the initial
state there is an activation sequence that
leads the system to the final state 𝑠𝑜𝑢𝑡);

• SC2:
∀𝑀(𝑠𝑖𝑛
∗
→𝑀⋀𝑀 ≥ 𝑠𝑜𝑢𝑡) => 𝑀 = 𝑠𝑜𝑢𝑡) (the
only state accessible from the initial state
that contains a token in the final state is
𝑠𝑜𝑢𝑡);

• SC3:
∀𝑡 ∈ 𝑇𝑡ℎ𝑒𝑟𝑒𝑎𝑟𝑒𝑀 𝑎𝑛𝑑 𝑀′𝑤𝑖𝑡ℎ𝑠𝑖𝑛

∗
→ 𝑀

𝑡
→𝑀′ (there are no dead transitions in the
𝑡 state).

Mathias Weske has shown in [7] that the
soundness problem for WF nets is decidable

in polynomial time for free choice nets. A
similar extension technique was used to
prove that all BWLNs built using the BPNT
algorithm are sound. It was shown the rela-
tionship between the liveness and boundness
properties of the extended net and the sound-
ness property and the fact that the networks
built using BPNT respect those properties.
If 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is a BWLN, then the
net 𝑅𝐵𝑒𝑥𝑡 = (𝑃,𝑇𝑒𝑥𝑡,𝐹𝑒𝑥𝑡, 𝑡𝑡𝑒𝑥𝑡 , 𝑡𝑒), where
𝑇𝑒𝑥𝑡 = 𝑇 ∪ {𝑡𝑒𝑥𝑡},
𝐹𝑒𝑥𝑡 = 𝐹 ∪ {(𝑡𝑒𝑥𝑡 , 𝑖𝑛), (𝑜𝑢𝑡, 𝑡𝑒𝑥𝑡)} and
𝑡𝑡𝑒𝑥𝑡 = 𝑡𝑡 ∪ {(𝑡𝑒𝑥𝑡 ,𝑆𝑖𝑚𝑝𝑙𝑒)} is called the
extended BWL network. The following
propositions were proved for BWL networks:
Proposition 1: If the extended net 𝑅𝐵𝑒𝑥𝑡 =
(𝑃,𝑇𝑒𝑥𝑡,𝐹𝑒𝑥𝑡, 𝑡𝑡𝑒𝑥𝑡, 𝑡𝑒)is live and bounded
then the original net 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is
sound.
Proposition 2: If the 𝑅𝐵is a sound net then
the extended net 𝑅𝐵𝑒𝑥𝑡is bounded.
Proposition 3: If the 𝑅𝐵 is a sound net then
the extended net 𝑅𝐵𝑒𝑥𝑡 is live.
Theorem 1: A BWL net
𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒)is sound if and only if
the extended net 𝑅𝐵𝑒𝑥𝑡 = (𝑃,𝑇 ′,𝐹 ′, 𝑡𝑡 ′, 𝑡𝑒)is
live and bounded.
The proof for theorem 1 results directly from
propositions 1-3. Using the theorem it was
proved that all subnets used in the BPNT step
5 of the algorithm are sound. For exemplifi-
cation we consider the case of the subnet cor-
responding to the while statement (Figure 2).

Fig. 7. Extended BWLN and reachability graph for the while statement

Let 𝑅𝐵𝑡𝑚𝑝 be the BWLN for the while
statement and 𝑅𝐵𝑒𝑥𝑡the extended net.Each of
𝑊𝐵𝑒𝑔𝑖𝑛,𝑊𝑇𝑟𝑢𝑒,𝑊𝐹𝑎𝑙𝑠𝑒, 𝑡1 𝑎𝑛𝑑 𝑡𝑒𝑥𝑡tran-

sitions uses one token and generates exactly
one token as output. The total number of to-
kens inside the net is constant. The initial

W True

W False

t1

out

W Begin

text

in p1

p2
(1 ,0 ,0 ,0)

(0 ,1 ,0 ,0)

(0 ,0 ,0 ,1)

(0 ,0 ,1 ,0)

Valid transition : W Begin

Valid transition : text

Va lid transitions : W fa lse , W True

Valid transition : t1

Economy Informatics, vol. 11, no. 1/2011

150

state contains exactly one token, so the total
number of tokens inside the net is 1 for any
possible state. The extended net 𝑅𝐵𝑒𝑥𝑡 is
bounded with 𝑘 = 1. From the reachability
graph (figure 2) results that for every reacha-
ble state M and every transition t there is a
state reachable from M that enables t, so the
subnet is live. Because the 𝑅𝐵𝑡𝑚𝑝 is live and
bounded it is also sound.
Theorem 2: If 𝑅𝐵 = (𝑃,𝑇,𝐹, 𝑡𝑡, 𝑡𝑒) and
𝑅𝐵𝑡𝑚𝑝 = �𝑃𝑡𝑚𝑝, 𝑇𝑡𝑚𝑝, 𝐹𝑡𝑚𝑝, 𝑡𝑡𝑡𝑚𝑝, 𝑡𝑒𝑡𝑚𝑝�
are two sound BWL networks then the 𝑅𝐵𝑓𝑖𝑛
network build by replacing the 𝑡𝑥 transition
from 𝑅𝐵 with the 𝑅𝐵𝑡𝑚𝑝 subnet following
step 5 from the BPNT algorithm is a viable
network.
Let 𝑖𝑛𝑡𝑚𝑝 and 𝑜𝑢𝑡𝑡𝑚𝑝 be the initial and final
states for the 𝑅𝐵𝑡𝑚𝑝 net. From SC1 𝑅𝐵𝑡𝑚𝑝
there is a firing sequence 𝜎𝑡𝑚𝑝 =
(𝑡1, 𝑡2, … , 𝑡𝑛) with 𝑡𝑖 ∈ 𝑇 for which sin𝑡𝑚𝑝
𝜎𝑡𝑚𝑝�⎯⎯� 𝑠𝑜𝑢𝑡𝑡𝑚𝑝 . From SC3 we know that firing
the sequence 𝜎𝑡𝑚𝑝 in 𝐵𝑇𝑓𝑖𝑛 is the same as fir-
ing transition 𝑡𝑥 in 𝐵𝑇. The operation move a
token from location 𝑖𝑛𝑡𝑚𝑝 to location
𝑜𝑢𝑡𝑡𝑚𝑝.
Let 𝑀 be a state accessible from the initial
state of 𝑅𝐵𝑓𝑖𝑛. If 𝑀 doesn’t contain tokens in
one of the locations from 𝑃𝑡𝑚𝑝, then a se-
quence can be built that brings the system
from state 𝑀 in state 𝑠𝑜𝑢𝑡 by replacing
transaction 𝑡𝑥 (if necessary) from the se-
quence obtained from SC1 applied on 𝑅𝐵
with the 𝜎𝑡𝑚𝑝 sequence. If 𝑀 contains tokens
id one of the locations from 𝑃𝑡𝑚𝑝 then a se-
quence 𝜎𝑀𝑓𝑖𝑛 to bring the system in state
𝑠𝑜𝑢𝑡 can be built using the following rules:
• we build a state 𝑀𝑡𝑚𝑝 for 𝐵𝑇𝑡𝑚𝑝 by taking

the tokens corresponding to locations
from 𝑃𝑡𝑚𝑝 from state 𝑀; because 𝐵𝑇𝑡𝑚𝑝 is
sound we have a sequence 𝜎𝑀𝑡𝑚𝑝 which
brings the system in 𝑠𝑜𝑢𝑡𝑡𝑚𝑝;

• using the definition we have a sequence
𝜎𝑀 that brings 𝐵𝑇 from state 𝑀 to state
𝑠𝑜𝑢𝑡 ;

• we build the sequence 𝜎𝑀𝑓𝑖𝑛 = 𝜎𝑀𝑡𝑚𝑝 ∪
𝜎𝑀 which brings 𝐵𝑇𝑓𝑖𝑛 from state 𝑀 to
state 𝑜𝑢𝑡.

The condition SC1 is satisfied. The same
rules can be used to prove condition SC3.
Let 𝑀 be a state of 𝐵𝑇𝑓𝑖𝑛 with 𝑀 ≥ 𝑠𝑜𝑢𝑡 and
𝜎𝑓𝑖𝑛 a sequence that brings the system from
state 𝑠𝑖𝑛 to state 𝑀. If 𝜎𝑓𝑖𝑛 doesn’t contain
transitions from 𝑇𝑡𝑚𝑝 then 𝑀 = 𝑠𝑜𝑢𝑡 (using
SC3). If 𝜎𝑓𝑖𝑛 contains a sequence from
𝑇𝑡𝑚𝑝 let 𝑀0 be the state of 𝐵𝑇𝑓𝑖𝑛 before the
first transition of the sequence and 𝑀1 the
state after the last transition. Let 𝑀 be a state
of 𝐵𝑇𝑓𝑖𝑛 with 𝑀 ≥ 𝑠𝑜𝑢𝑡 and 𝜎𝑓𝑖𝑛 a sequence
that leads the system from state 𝑠𝑖𝑛 to state
𝑀. If 𝜎𝑓𝑖𝑛 doesn’t contain transitions from
𝑇𝑡𝑚𝑝, then 𝑀 = 𝑠𝑜𝑢𝑡 by SC3. If 𝜎𝑓𝑖𝑛 con-
tains a sequence from 𝑇𝑡𝑚𝑝 then let 𝑀0 be the
state of 𝐵𝑇𝑓𝑖𝑛 before the first transition of the
sequence and 𝑀1 the state after the last tran-
sition of the sequence. Using SC2 on 𝐵𝑇𝑡𝑚𝑝
we have 𝑀0�𝑖𝑛𝑡𝑚𝑝� = 1,𝑀0�𝑜𝑢𝑡𝑡𝑚𝑝� = 0
and 𝑀1�𝑖𝑛𝑡𝑚𝑝� = 0,𝑀1�𝑜𝑢𝑡𝑡𝑚𝑝� = 1. The
sequence 𝜎𝑓𝑖𝑛 for 𝐵𝑇𝑓𝑖𝑛 is equivalent with cu
sequence 𝜎 for 𝐵𝑇 obtained by replacing the
transitions from 𝑇𝑡𝑚𝑝 with the transition 𝑡𝑥.
Using SC2 we have 𝑀 = 𝑜𝑢𝑡,so SC2 is satis-
fied. Because all three conditions for the
𝐵𝑇𝑓𝑖𝑛 are satisfied the net is sound.
Using theorem 2 and the properties of the
subnets corresponding to the BWL state-
ments it was proved that any BWT net ob-
tained using the BPNT algorithm is sound.
Because the algorithm is able to map any
BWL program to the equivalent BWLN, all
BWL programs are unaffected by structural
problems.

4 Conclusions
Business processes modeled using workflow
languages are increasingly complex. Because
those process models are executed automati-
cally by the system and have an immediate
impact on the business it’s critical to ensure
that the models are correct. In [2] and [6] it’s
shown that process size, complexity and tools
used have an important impact on process de-

Economy Informatics, vol. 11, no. 1/2011

151

finition. Because BWL programs are proved
to be sound, designers can use the language
to express complex processes correctly,
without worrying about the structural prob-
lems that might appear.

References
[1] W. M. P. van der Aalst, K. van Hee,

Workflow Management: Models, Me-
thods, and Systems (Cooperative Infor-
mation Systems), The MIT Press, 2004,
368pp.

[2] D. Birkmeier, S. Kloeckner, S. Overhage,
“An Empirical Comparison of the Usabil-
ity of BPMN and UML Activity Dia-
grams for Business Users”, International
Conference on the Quality of Software
Architectures, Lecture Notes in Computer
Science, Prague 2010, pp 119-134.

[3] M. Dumas, W.M.P. van der Aalst,
A.H.M. ter Hofstede, Process Aware In-
formation Systems. Bridging People and

Software Through Process Technology,
Wiley Interscience, 2005.

[4] C. Ioniţă, “A Domain Specific Language
for Secure Document Management”,
Proceedings of the Eighth International
Conference on Informatics in Economy,
Bucharest 2007.

[5] C. Ioniţă, “Collaborative Business
Process Optimization Using Domain
Specific Languages”, Proceedings of the
ninth International Conference on Infor-
matics in Economy, Bucharest 2009.

[6] J. Mendling, M. Moser, G. Neumann, H.
Verbeek, B. van Dongen, W. van der
Aalst, “Faulty EPCs in the SAP Refer-
ence Model”, Proceedings of Business
Process Management Conference, Lec-
ture Notes in Computer Science, Vienna
2006, pp 451-457.

[7] M. Weske, Business Process Manage-
ment: Concepts, Languages, Architec-
tures, Springer-Verlag, Berlin 2007.

Cristian IONITA has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2004. He is a PhD student at the Academy of Eco-
nomic Studies Bucharest since 2006 and a teaching assistant inside the De-
partment of Computer Science in Economics at Faculty of Cybernetics, Sta-
tistics and Economic Informatics. Main interest topics are programming lan-
guages, data structures, distributed applications and enterprise systems. He is
the author or coauthor of 16 journal articles and coauthor in 2 books on these

topics.

	Analytic Evaluation of BWL Nets
	Cristian IONITĂ
	Academy of Economic Studies, Bucharest, Romania
	Keywords: BWL, Workflow, Petri Nets, Evaluation, Open System
	Introduction
	2 Structural problems in existing workflow languages
	Fig. 2. Structural problems examples using the YAWL language [1]
	3. BWL Programs and Networks
	Fig. 3. BWL representation for the claim processing process
	Fig. 4. Corresponding BWL networks for the BWL control flow statements
	Fig. 5. Abstract syntax tree for the BWL claim processing process
	Fig. 6. BPNT algorithm application
	3 Soundness in BWL networks
	Fig. 7. Extended BWLN and reachability graph for the while statement
	4 Conclusions
	References

