
Economy Informatics, vol. 11, no. 1/2011

72

Developing a Transaction Engine for Mobile Payment

Andrei TOMA, Radu CONSTANTINESCU, Floarea NĂSTASE
Academy of Economic Studies, Bucharest, Romania

andrei.toma@ie.ase.ro, radu.constantinescu@ie.ase.ro, nastasef@ase.ro

With the ubiquitous presence of mobile phones, there is increasing economic viability of a
framework for service and product payment through mobile devices. Such a framework in-
volves on one hand software running on the device itself, but more importantly a back end
with sufficient flexibility to cover the wide range of possible transactions. The back end is ma-
terialized through a generalized transaction engine which operates on abstract operations.
Constructing the engine involves identifying the possible actors and operations which the sys-
tem must support as well as formalizing a possible architecture for the engine itself. The en-
gine must support complex multi stage operations involving the external actors.
Keywords: Mobile Transactions, Operation Engine, Flexible Architecture

Introduction
The goal of the system is the construction

of an intermediary payment layer for mobile
phone transactions. Transactions are initiated
by software running on the mobile phones
themselves or on specific devices (such as
electronic points of service).
In order to preserve system flexibility the
implementation must be done through a gen-
eral enough mechanism that will allow it to
be extensible. The reason for this approach is
that the technologies involved in mobile
payment are extremely dynamic and may
lead to different interactions within the lifes-
pan of the platform.
Communication with the system must be
flexible enough to support requests from a
multitude of devices. Also, some actors, such
as financial institutions, will always be out-
side the system. For these reasons, the inter-

face with the system is done through a series
of web services.

2 A mobile payment system
In order to implement an abstract mobile
transaction layer, a series of prerequisites
must be taken into account. First of all, given
the diversity of the involved actors, the me-
chanisms selected for implementation must
allow for a uniform standard, independent of
the particular implemented use case.
The second important aspect is that the sys-
tem must be capable of running a diverse set
of operations and that the full set of the ne-
cessary use cases is not known from the be-
ginning, a fact which suggests a solution with
a high degree of flexibility as pertaining to
the possible operations and the activities that
compose them.

Fig. 1. Actors in the system

1

Economy Informatics, vol. 11, no. 1/2011

73

3 Identifying the actors
The first step in implementing the system is
identifying the relevant actors which are in-
volved in a series of operations which in-
volve a varied degree of complexity. Some of
these actors are registered with the system
while some are external.
The typical client of the system is an individ-
ual who wants to make rapid transactions
through a mobile device. While this type of
operation is at the core of the system, the
supported operations are defined in a manner
allowing initiation through a varied set of
means (e.g. the portal associated with the
system) without significant changes. The
clients register to the system through the por-
tal.
A Point of Service (POS) is a special type of
client to the system as although the POS is an
intermediary for the client’s transaction, it
can be assimilated with an ordinary client,
albeit registered through administrative
means and not directly. The significant dif-
ferences will refer only to the rules pertaining
to authentication in the system.
A service provider is a legal person regis-
tered with the system to which payments can
be made by the clients. The service providers
also have direct access to the system and are
registered through the portal.
Banks are financial institutions to which the
system can send letters of payment in the

name of the clients. Banks are not registered
with the system and the particulars of the in-
volved communication mechanisms depend
on each bank.

4 Common use cases
While the scope of possible operations is at
first glance very large, the substantial differ-
ences between them are generally restricted
to the communication channel through which
they are initiated. For example, an operation
representing payment through SMS, initiated
by sending a message to a special number is,
from the point of view of the operations en-
gine, identical with payment through the por-
tal. Although the initial request is different, it
can be converted into a message sent to the
system through a web service. For the above
reason the two operations would be identical,
assuming they refer to the same operation.
Considering this initial analysis, the main op-
erations covered by the engine are payment
from a virtual wallet present in the system,
accompanied by the possibility of placing
funds in the virtual wallet, and payment from
an external source of funds (e.g. a bank ac-
count).
Below we detail a series of use cases which
are implemented in the system. While these
use cases are fairly specific, they are actually
representative of the main classes of opera-
tions which the system can cover.

Economy Informatics, vol. 11, no. 1/2011

74

Fig. 2. The flow of an SMS payment

Figure 2 presents one of the main use cases
reflected by the system. While the figure re-
fers to payment of a service via SMS, from
the point of view of the transaction engine,
this particular payment is equivalent to any
payment from a virtual wallet. The activities
with a red border are final activities corres-
ponding to errors, while the activity with a
green border, is a final activity corresponding
to the successful completion of the operation
(which must be unique).
The use case is triggered when the system
receives a payment request, if the payment is
to be performed with funds from the virtual
wallet. After the system receives it, the re-
quest is validated with two possible results. If
the request does not contain all the necessary

fields, an error is returned, signaling the user
that the request was malformed.
If the request was valid, the system goes to
the next processing step, consisting in vali-
dating the requested amount against the
available amount in the virtual wallet. Again,
if the funds are insufficient, an error is re-
turned signaling the user that the wallet did
not contain the required amount. If the vali-
dation is passed, a request is done with the
system to reserve the funds for payment.
The next step is the payment itself which can
either be performed without problems, lead-
ing to a successful final activity or lead to an
error signaling the user that the payment
could not be performed. In this event, the
reservation on the funds is rescinded.

Economy Informatics, vol. 11, no. 1/2011

75

Fig. 3. The flow of a portal operation

Figure 3 presents the flow of an operation
performed through the support portal. Al-
though the use case describes the acquisition
of a service through the portal, from the point
of view of the engine, this operation is equiv-
alent with the payment through any mechan-
ism.
The use case is triggered when the user ac-
cesses the portal. A preliminary step consists
in the authentication of the user, which can
either have a negative result, in which case
the system returns an error message, or posi-
tive, in which case the system continues to
the execution of the requested operation.
The operation can have multiple steps and
depending on its results, multiple errors can
occur. In this particular use case, the possible
errors were an error reflecting the absence of
sufficient funds and a more general error in
the execution of the operation.
If no errors were encountered, the use case
ends in a success, otherwise an error message
will be returned to the client, reflecting why
the operation could not be completed. The
possible causes depend on the nature of the
operation itself.
In the case of the acquisition of a service, for
example, the system might not be able to per-
form the payment due to lack of funds. Since
the execution of the operation is done
through the support portal, some possible er-
rors specific to the operation might not occur.
For example, since the format of the request

is controlled, it is improbable that the request
is malformed. However, since these checks
are done in the operation itself, the operation
is still capable of returning the corresponding
error message.
Figure 4 presents another important use case
implemented in the system, payment of a
service from funds present in a bank account.
Although the use case describes the acquisi-
tion of a service through Bluetooth, from the
point of view of the transaction engine, this
operation is equivalent to any payment re-
quested through any mechanism, as long as
the necessary funds are in a bank account.
The use case is triggered when the system
receives a payment request. The activities
present in the figure are typically preceded
by the authentication of the client.
The activity in the operation is the validation
of the message form. If the operation has not
received all the information necessary to per-
form the payment an error is returned to the
client, signaling that the request was mal-
formed.
If the request was valid, the next step is to
validate the amount of available funds. In
this case, the validation involves communica-
tion with the bank. A request is made to the
bank to reserve the necessary funds. If the re-
sponse from the bank reflects the absence of
sufficient funds, an error message is returned
to the user.

Economy Informatics, vol. 11, no. 1/2011

76

Fig. 4. Flow of a bank account payment

If the amount has been successfully reserved,
a request to transfer them is made to the
bank. Depending on the response from the
bank, this will either end the operation with a
success, or continue it. If the transfer was
impossible, it is still necessary to instruct the
bank that the funds are no longer needed, af-
ter which an error message is sent to the user,
informing it of the impossibility of the pay-
ment

5 The operations engine
5.1 Concepts
At the core of the system is the operations
engine which is responsible with the execu-
tion of specific operations requested from
outside the system. Execution is done in a
predefined order of activities by navigating

their structure based on the feedback re-
ceived from actors outside the system.
An operation, and thus a set of activities, is
started when a request is received from out-
side the system through the web service
which is exposed to the clients for this pur-
pose.
The operations engine executes abstract op-
erations, composed of abstract activities. The
particular activities composing an operation
are executed in the order of the activity flow
defined within; execution of atomic activities
stops when a final activity is encountered.
From the engine’s point of view, the content
of each activity in the flow is unknown as on-
ly their outcome and the order it determines
is relevant.

Economy Informatics, vol. 11, no. 1/2011

77

Fig. 5. Flow of an operation

The following sections take a closer look at
the principles by which the engine functions
and the concepts that they are based on.

5.2 Abstract operations
An abstract operation is the representation in
the system of an atomic exchange of data re-
ferring to a payment, a transfer of funds etc.
in a manner ensuring a high level of generali-
ty. The advantage of this approach is given
by the possibility of future implementation of
a large variety of operations without modify-
ing the engine’s implementation.
The model of the interactions between the
system’s clients and the other involved actors
is assumed to be in constant evolution and
thus an operation must be defined in such a
way as to be able to abstract any future inte-
raction. An operation is thus an entity which
can be run by the engine regardless of its
content.
Operations are represented as entities which
receive a message and initiate the execution
of an activity flow starting from an initial ac-
tivity. The operation maintains an activity
tree and is responsible with identifying what
activity follows a completed one.
When an operation is started, it identifies the
initial activity from the activity tree and
sends it the parameters necessary for its ex-
ecution. After a particular activity has started
running the operation waits for the outcome
of its execution. Depending on the result the
operation receives, the operation selects the
next activity and runs it. The execution of the
operation stops when a final activity is en-
countered.

5.3 Abstract activities
The representation of an activity within the
system should ideally be abstract in the sense
in which any previously implemented activi-
ties can be assembled into an operation. An
advantage of this approach is the high reusa-
bility associated with an activity.
From the view that activities are just ex-
changes of messages with actors from out-
side the system the advantages are limited.
However, abstract activities can have diverse
types and serve diverse purposed. For exam-
ple activities can be defined which handle da-
ta conversion or filtering.
Special purpose activities include initial and
final activities. Initial activities are the entry
points of operations and an operation has on-
ly one initial activity. Initial activities are
identified by the fact that they have no par-
ents in the activity tree.
An operation stops its execution when it en-
counters a final activity which is an activity
with no children in the activity tree. Almost
invariably, a final activity will consist of
communicating the outcome of the operation
to one of the involved actors.

5.4 Logging
An operation also handles logging its own
start and all the activities that it executes in a
transaction log. This has on one hand the
purpose of ensuring that should the system
not perform as predicted any errors can be
corrected and, on the other hand, creating the
possibility of transaction reversal. This
would be desirable when, although there was
no error in the functioning of the system, the

Economy Informatics, vol. 11, no. 1/2011

78

external reason for the operation made it in-
valid (e.g. factual error, fraud).
In the latter case, it would be desirable that
operations in the system were reversible.
This can be achieved by ensuring the activi-
ties themselves can be executed independent
from one another (atomic).
If activities are atomic and the order of their
execution is known, the system can reverse
an operation.

6 The support portal
The engine is coupled with a support portal
which represents the interface through which
both the clients and the service providers can
register, make payments and view their
transaction log.
Although the main purpose of the portal is
registration with the system, due to the way
in which the operations engine communicates
with the exterior, the functionality of the por-
tal can be extended to also include all the
supported operations.
The portal covers user authentication, regis-
tration of clients and service providers
(coupled with the validation of the supplied
registration data) and launching operation re-
quests to the engine. In a similar approach to
the operations engine itself, all portal func-
tionality is accessible through web services.

7 Engine technologies
In the implementation of the engine the tech-
nological choices were dictated by the gener-
al approach. As such, both the engine and the
portal communicate with the exterior and
each other via SOAP 1.2 web services. This
ensures that the engine can be used by a va-
riety of possible client applications. The ser-
vices themselves are written in the Java lan-
guage with the JAX-WS framework. In order
to expose the services, a GlassFish applica-
tion server was used.
Data access is handled through JDBC, ensur-
ing a minimal of data model abstraction; in
the prototype phase, the data is stored on a
MySql database server.
The portal is constructed in JSF(Java Server
Faces) over a service model (all portal opera-
tions are also done through web services) al-

so deployed on a GlassFish application serv-
er.

8 Conclusions
The prototype of the transaction engine im-
plemented in research project […] has a se-
ries of advantages. From the point of view of
the inherent dynamic of transactions involv-
ing mobile devices, the engine was imple-
mented in and extensible manner in order to
easily cover new operations as they become
necessary. More importantly, the implemen-
tation of new operations would only involve
adding a new series of activities. Even that
can be avoided if the necessary activities
have already been implemented as part of
previous operations.
Activities are a flexible mechanism through
which diverse transformations of the data can
be reflected as well as validations etc. allow-
ing for the construction of complex opera-
tions. Furthermore, the representation of the
activities in an actual operation has the added
advantages of being simple and flexible.
Communication with the system is also done
in a flexible manner, with all the requests in
XML format. This approach ensures that the
transaction engine can be invoked from any
type of client application even if it is built us-
ing radically different technologies from the
ones used in the implementation of the sys-
tem.

Acknowledgements
This work was supported by PN II research
contract nr. 3039/01.10.2008. We would also
like to take this opportunity to thank our stu-
dents, Ioan Dragan and Alex Stănimir, for
their important role in the implementation of
the prototype.

References
[1] SERAFIMO, Integrated platform for

electronic financial transactions and ser-
vices implemented using current mobile
devices technologies, PN II research con-
tract nr. 3039/01.10.2008, project director
Prof. Dr. Năstase F., stage III “Industrial
research – implementation of the experi-
mental model”

Economy Informatics, vol. 11, no. 1/2011

79

[2] SERAFIMO, Integrated platform for
electronic financial transactions and ser-
vices implemented using current mobile
devices technologies, PN II research con-
tract nr. 3039/01.10.2008, project director
Prof. Dr. Năstase F. stage II “Identifica-
tion of the technologies used in the devel-
opment of the project”

[3] SERAFIMO, Integrated platform for
electronic financial transactions and ser-
vices implemented using current mobile
devices technologies PN II research con-
tract nr. 3039/01.10.2008, project director
Prof. Dr. Năstase F., stage 1 “Industrial
research– analysis and design

Andrei TOMA graduated the Faculty of Cybernetics, Statistics and Eco-
nomic Informatics, Economic Informatics specialization, within Academy of
Economic Studies Bucharest in 2005 and the Faculty of Law within the Uni-
versity of Bucharest in 2005.In present conducting doctoral research at the
Academy of Economic Studies.He is currently interested in IT Law as well as
Computer Science issues and seeks an interdisciplinary approach to legal is-
sues related to Computer Science.

Radu CONSTANTINESCU has a background in computer science. He has
graduated the Faculty of Cybernetics of the Academy of Economic Studies
in Bucharest. He has finished his doctoral research at the Academy of Eco-
nomic Studies, with the topic on Information Security. His fields of interest
include computer security related issues.

Floarea NASTASE is a professor at the Economic Informatics Department
at the Faculty of Cybernetics, Statistics and Economic Informatics from the
Academy of Economic Studies of Bucharest. Competence areas: information
technology and communications, computer net-works, web technologies, e-
business, information systems audit. She is author or coauthor of 16 books
and more than 80 scientific papers published in national and international
conferences proceedings and journals. She participated in more than 15 re-

search projects, as director or as team member.

	Developing a Transaction Engine for Mobile Payment

