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Introduction 
In recent years, neural networks as multi-

layer perceptrons and radial basis function 
networks have been frequently used in a wide 
range of fields, including control theory, sig-
nal processing, model selection and parame-
ter tuning in text categorization, bioinformat-
ics, and nonlinear modeling. Support Vector 
Machines (SVM) were introduced by Vapnik 
within the area of statistical learning theory 
and structural risk minimization and first ap-
plied to classification problems as alterna-
tives to multi-layer neural networks [16], 
[17]. The high generalization ability provided 
by Support Vector Classifiers (SVCs) has in-
spired recent work on computational spee-
dups as well as the fundamental theory of 
model complexity and generalization.  
According to the theory of SVMs, while tra-
ditional techniques for pattern recognition are 
based on the attempt to optimize the perfor-
mance in terms of the empirical risk, SVMs 
minimize the structural risk, that is, the prob-
ability of misclassifying yet-to-be-seen pat-
terns for a fixed but unknown probability dis-
tribution of data. The most distinguished and 
attractive features of this classification para-
digm are the ability to condense the informa-
tion contained by the training set and the use 
of families of decision surfaces of relatively 
low Vapnik-Chervonenkis dimension. 

SVM approaches to classification lead to 
convex optimization problems, typically qu-
adratic problems in a number of variables 
equal to the number of examples, these opti-
mization problems becoming challenging 
when the number of data points exceeds few 
thousands.  
For making SVM more practical, several al-
gorithms have been developed such as Vap-
nik’s chunking, and Osuna’s decompositions 
[9] [19]. They make the training of SVM 
possible by breaking the large QP-problem 
into a series of smaller QP-problems and op-
timizing only a sub-set of training data pat-
terns at each step. Because the subset of 
training data patterns optimized at each step 
is called the working set, these approaches 
are referred as the working set methods.  
Recently, a series of works on developing pa-
rallel implementation of training SVM’s have 
been proposed [4]. Also, there have been 
proposed methods to solve the least squares 
SVM formulations [3] [5] [15] as well as 
software packages as SVMlight [6], mysvm 
[11] and many others [1] [2] [8]. 
In this paper we present a heuristic learning 
algorithm of gradient type for training a 
SVM and analyze its performance in terms of 
accuracy and efficiency when applied to li-
near separable data. In order to evaluate the 
efficiency of our learning method, several 
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tests were performed, the conclusions being 
formulated in the final section of the paper. 
 
2 The Largest Margin Linear Classifier 
Based on Support Vectors (SVM) for Li-
near Separable Data 
SVM learning is one of the best supervised 
learning algorithms. The task is to predict on 
the basis of a finite set of labeled examples

( ) { }{ }Niyxyx i
n

iii ≤≤−∈∈= 1,1,1,,, RS  
either a test sample comes from one of two 
classes 21, hh , or it is unclassifiable. The first 
component of each pair ( ) S∈ii yx , is a par-
ticular example and the second one, conven-
tionally denoted either by -1 or by 1, is the 
label of the provenance class of ix . The ex-

amples coming from 1h are labeled by 1 and 
they are referred as positive examples, while 
the examples coming from 2h are labeled by 
-1 and they are referred as negative exam-
ples. 
The classification (recognition) is performed 
in terms of a parameterized decision rule 

wbh , { }1,1: −→nR , 
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The set S is called linearly separable if  
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Tn 1,0,,, RRSH . 
 
Obviously, for finite size data sets, if S is li-
nearly separable, then SH is an infinite set. 
In order to assure the best generalization ca-
pability, that is to classify well new examples 
coming from these two classes, from intuitive 
point of view, one has to determine the op-
timal margin classifier ( )∈**,bw SH  that 
separates the positive and the negative train-
ing examples with the largest “gap” between 
them. 
Let ( )bwH ,  be a hyper plane that separates 
without errors S . For any ( )∈ii yx , S , let 

iγ be the distance of ix  to ( )bwH , . The val-
ue iγ is the geometric margin of  ( )bwH ,  
with respect to ( )ii yx , .  
 Obviously,  
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that is the values of the geometric margins 
are not modified if the parameters w and b 
are multiply by a positive constant([14]). 
The geometric margin of ( )bwH ,  with re-
spect to S is iNi

γγ
≤≤

=
1
min . 

From mathematical point of view, an optimal 
margin classifier is a solution of the quadratic 
programming (QP) problem, 
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The problem (1) can be solved using the La-
grange multiplier method. Let 
( )NbwL ααα ,...,,,, 21  be the objective func-

tion,  
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where Nααα ,...,, 21 are nonnegative Lagrange multipliers. 
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The dual optimization problem yields to the 
QP problem on the objective function  
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If ( )TN
**
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* ,...,, αααα =  is a solution of 

(3), then the optimal value of the parameter w 
is 
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The parameter b cannot be explicitly com-
puted by solving the SVM problem, a conve-
nient choice of b being derived in terms of 
the support vectors and *w . 
The Karush-Khun-Tucker (KKT) comple-
mentarity conditions are, 
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that is,  
for any Ni ≤≤1 , if 0* >iα , then 
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The examples ix  for which 0* ≠iα are called 
support vectors. 
The value b should be taken such that 
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that, 
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for instance in case we take *b as the middle 
of the interval, we get 
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The SVM classifier implements the IF-
THEN decision rule { }UhhD n ,,: 21→R , 
where 

 
IF 0** >+ bxw T THEN D(x) 1h=  

IF 0** <+ bxw T THEN D(x) 2h=  

IF 0** =+ bxw T THEN D(x) U=  
 
and U means “unclassifiable”. 

 
3 Brief Overview on a Certain Class of 
Methods for Solving the SVM-QP Prob-
lem  
There have been proposed a series of me-
thods to solve the corresponding dual QP op-
timization problems to SVM learning as for 
instance Sequential Minimal Optimization 
(SMO), decomposition methods [13] and [8], 
and methods to solve the least squares SVM 
formulations [3] [5] [15] as well as software 
packages as SVMlight [7], mysvm [11] and 
many others. 
In 1982 Vapnik [16] proposed a method to 
solve the QP problem arising from SVM re-
ferred as “chunking”. The large QP problem 
can be split into smaller QP problems whose 
ultimate goal is to identify all the non-zero 
Lagrange multipliers and discard all the zero 
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ones. Chunking reduces significantly the size 
of the matrix corresponding to the particular 
QP problem, but still cannot handle any large 
scale training problem. 
A new class of QP algorithms for SVM de-
rived from the developments proposed by 
Osuna [9]. Osuna proved that the large QP 
problem can be reduced to a series of smaller 
QP sub-problems based on the idea that as 
long as at least one example that violets the 
KKT conditions is added to the examples 
used in the previous sub-problem, at each 
step the overall objective function is reduced 
and a feasible point that obeys the constraints 
is maintained.  
Sequential minimal optimization (SMO) al-
gorithm proposed by Platt ([10]) is a simple 
algorithm that allows to solve the SVM-QP 
problem without extra-matrix storage by de-

composing the overall QP problem into sim-
ple QP sub-problems using Osuna’s theorem 
[9]. Unlike the previous proposed methods, 
the SMO algorithm solves the smallest opti-
mization problem at each step. Obviously, in 
case of the standard SVM-QP problem the 
smallest possible optimization problem in-
volves two Lagrange multipliers, because the 
Lagrange multipliers must fulfill a linear 
equality constraint.  
The idea of the SMO algorithm is to use a 
predefined constant 0>C , and the tolerance 
parameter 0>τ , to express sort of tradeoff 
between accuracy and efficiency. At each ite-
ration two examples ( )pp yx ,  , ( )qq yx ,  are 
looked for such that the following condition 
holds, 
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In case there exists at least a pair ( )pp yx ,  , 
( )qq yx ,  for which (5) holds, the components 

pα  and qα of the current parameter vector 
( )Nαααα ,...,, 21= are changed such that to 

increase ( )pxfα and to decrease ( )qxfα , 
where  
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In order to get a new point α fulfilling the 
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N
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i =∑

=
iyα , the updating rules 
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In case the conditions Cy pp ≤+≤ ηα0 and 
Cyqq ≤−≤ ηα0 do not hold, it is recom-

mended that the updating should be per-
formed using a smaller value of the coeffi-
cientη . 
The search is over when there are no exam-
ples ( )pp yx ,  , ( )qq yx ,  satisfying ( )5 , the 
optimal margin b being computed as, 
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The SMO learning algorithm can be de-
scribed as follows. 

 
INPUT: N0←α , 0←b , 0>C ,

0>τ  
1←Continue  
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DO 
     Find two examples ( )pp yx ,  , 

( )qq yx ,  such that (5) holds 
IF no such examples can be found 

0←Continue  
ELSE 
 Compute η using (6) 

ηαα ppp y+←  
ηαα qqq y−←  

IF needed, reduce η such that  
Cy pp ≤+≤ ηα0 and 

Cyqq ≤−≤ ηα0  
 WHILE (Continue) 
 
A long series generalizations and improve-
ments have been recently proposed by many 
authors. For instance, in [4] a parallel version 
of SMO is proposed to accelerate the SVM 
training. Unlike the sequential SMO algo-
rithm, that handles all the training data points 
using one CPU processor, the parallel version 
of the SMO algorithm first partitions the en-
tire training data set into smaller subsets and 
next runs simultaneously more CPU proces-

sors to deal separately with each subsets.  
 
4 A New Method for Solving the SVM-QP 
Problem 
Our method for solving the SVM-QP prob-
lem is a heuristic variant of the gradient as-
cent method. For simplicity sake we assume 
that the first m examples come from the first 
class (that is their labels are 1) and the next 

mN − examples come from the second class 
(all of them are labeled by -1). 
The entries of the gradient ( )ααQ∇  of the 
objective function 
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that is ( )( )αQH is negative semi-defined. 

If we denote by oldα the current value of the 
parameterα , by applying the standard gra-
dient ascent updating rule we get  

 
( )9 ( ) oldQold

ααα αραα =∇+= , 

where 0>ρ is the learning rate. 
 
However, this updating rule can not be ap-

plied straightforward because the constraint 

0
N

1i
i =∑

=
iyα have to be satisfied, and conse-

quently, a modified learning rule of gradient 
ascent type should be considered instead of 
(9).  In our approach, the updating step is 
performed as follows.  
Assume that 1p , 2p  are such that 

 
Npmmp ≤≤+≤≤ 21 1,1  
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and let ( )TNαααα ,...,, 21= be such that, 
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Obviously, if oldα satisfy the constraint 
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straint 0
N

1i
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=
iyα . We would like to deter-

mine 1p , 2p  such that the difference 

( ) ( )oldQQ αα − is maximized. Using the first 
order approximation of the variation of the 
objective function, we get, 
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Therefore, the indices 1p , 2p  should be tak-
en such that  
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and 
 

( ) ( )oldQQ αα − is maximized. 
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for all Npmmp ≤≤+≤≤ 21 1,1 , the 
search is over and the current parameter 

oldα is taken as an approximation of a local 
maximum of the objective function.  
Putting together these arguments, we arrive 
to the following learning algorithm. 

 
INPUT: N0←α , 10,0 1 ≤≤> ρρ  
DO 

1. Compute the set ( ){ }21, ppS = of pairs of 
indices for which (10) and (11) hold.  
2. IF ∅≠S THEN  

2.1. Select ( ) Spp ∈21, such that 

( ) ( )oldQQ αα −  is maximized 
2.2. Update the parameter:

21,,1, ppiNiold
ii ≠≤≤= αα  
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WHILE ( ∅≠S ) 
 
The learning rates ρ  and 1ρ are taken such 
that the search process is optimized from 
both point of views, accuracy and efficiency. 
Concerning the additional learning rate 1ρ , 
different heuristically motivated expressions 
can be proposed. We used two ways to com-
pute 1ρ aiming to weight the data coming 
from the classes in terms of sample means 
and sample covariance matrices. Let us de-
note by 21 ˆ,ˆ µµ , 21

ˆ,ˆ ΣΣ the sample means and 

sample covariance matrices, and by +A the 
Penrose pseudo-inverse of the matrix A , 
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The first value of the learning rate 1ρ is de-
fined in terms of the variation coefficients  

( ) 2,1,ˆˆˆ =Σ=
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T
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and the value of the second learning rate is 
set to 
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5 Conclusions and Experimental Results  
The main purpose of our experimental devel-
opments was to compare the performance of 
our method, in terms of accuracy and effi-
ciency, for different data sets and the two 

choices of the learning rate 1ρ given by (12) 
and (13)against the Platt’s SMO algorithm.  
The tests were performed on different data 
sets, all of them being randomly generated 
from normal distributions of different varia-
bility at the level of the actual distributions 
and of generated data.  
Let { }mxxx ,...,, 21 and{ }Nmm xxx ,...,, 21 ++ be 
the samples coming from the classes 1h , 2h  
respectively. The classes are represented in 
terms of normal multivariate repartitions
( ) 2,1,, =Σ iN iiµ . The closeness degree be-

tween the classes 1h , 2h is expressed by 
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The MLE of mean vectors and covariance 
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We use two metrics 21

ˆ,ˆ dd to express the 
closeness degree between the samples 
{ }mxxx ,...,, 21 and{ }Nmm xxx ,...,, 21 ++ ,  
 
( )15 ( ) ( ) ( ) ( )212121211 ˆˆˆˆˆˆ,ˆ µµµµ −Σ+Σ−=

+Thhd  
and  
( )16 ( ) jmi

mNj
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1
1

212 ,ˆ  

where  is the Euclidean norm. In (15) we 
used the Penrose pseudo-inverse instead of 



Economy Informatics, vol. 11, no. 1/2011 12 

the inverse of the matrix ( )21
ˆˆ Σ+Σ  because 

the matrices 21
ˆ,ˆ ΣΣ depend on data and it 

could happen that ( )21
ˆˆ Σ+Σ  is a singular ma-

trix. 
We used linear separable test data coming 
from two dimensional normal distributions 
and tried to derive conclusions concerning 
the performance of our learning algorithms. 
In the following, we present an experiment 
where the classes are quite close, the gener-
ated sets of examples coming from these two 
classes happens to be well separated, dd >1

ˆ
and the distance between the closest pair of 
examples significantly large.    
 
Test. The examples are randomly generated 
from two dimensional normal distributions. 
The set S consists of 40 examples coming 
from ( )11,ΣµN , and 35 examples coming 
from ( )22 ,ΣµN , where   

 
( )T8111 =µ , 
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3125.5825.3
825.389.2

1 ,  

( )T252 −=µ ,  









=Σ

3225.10
04884.1

2 , 

 
therefore ( ) 0970.15, 21 =hhd . The statistical 
information about S is 

 
( )T2605.82169.11ˆ1 =µ ,  









=Σ

3605.35486.2
5486.20805.2ˆ

1 ,  

( )T2084.28448.4ˆ2 −=µ , 









=Σ

9015.02022.0
2022.00978.1ˆ

2 . 

( ) 8224.25,ˆ
211 =hhd  

( ) 3680.5,ˆ
212 =hhd  

 

The maximum value of the objective func-
tion (6) computed by the SMO algorithm is 
0.069406. The values of the objective func-
tion (6) computed by our method are 
represented in Table 1 and Table 2. Note that 
our method “almost optimized” the objective 
function Q in only 13 iterations, the value 
computed by the SMO algorithm in 13 itera-
tions being 0.0563. The number of support 
vector is 3 and the value of *b is computed 
according to (4).  
There are a series of similarities and differ-
ences between our method and Platt’s SMO 
algorithm. Concerning the differences, note 
that, from theoretical point of view, our me-
thod does not involve any particular value of 
the constant C as in case of the SMO algo-
rithm. Also, the value of the parameter η giv-
en by (6) does not always assure that the con-
straints Cy pp ≤+≤ ηα0 and 

Cyqq ≤−≤ ηα0  hold, in such a case the 
SMO algorithm recommend to decrease the 
value of η .  
In case of the SMO algorithm, the examples 
( )pp yx ,  , ( )qq yx ,  are looked for in the 
whole set of examples, while in our method, 
the examples are searched in each of the two 
classes respectively. The value of the toler-
ance parameter τ  influences significantly the 
accuracy and efficiency of the SMO algo-
rithm, small values of τ yielding to better ac-
curacy and increased computational com-
plexity, while larger values of τ degrades the 
accuracy especially in case of small size data.    
The performance of our learning algorithm 
expressed in terms of the number of itera-
tions required to get a good approximations 
of the solution of the QP-problem (3) is 
strongly influenced by the closeness of the 
sets of examples coming from the two 
classes. Our algorithm computes a quite ac-
curate approximation in a small number of 
iterations, only slight adjustments being ob-
tained in case we allow a longer training 
process.  
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Table 1. Experimental results of our method in case 
21

2
1 ˆˆ

ˆ
µµ

µ
ρ

+
=  

Number of 
iterations 

ρ  
The value of the 

objective 
function Q 

Tw*  *b  

16 0.005 0.066174 (0.1741    0.3337) -1.8905 
151 0.0005 0.069084 (0.1771    0.3294) -1.9016 
754 0.0001 0.069342 (0.1768    0.3280) -1.8971 

7531 0.00001 0.069400 (0.1769    0.3279) -1.8973 
 

Table 2. Experimental results of our method in case 
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2
1 θθ

θ
ρ

+
=  

Number of 
iterations 

ρ  
The value of the 

objective 
function Q 

Tw*  *b  

13 0.005 0.066181 (0.1728    0.3312) -1.8761 
121 0.0005 0.069085 (0.1769    0.3290) -1.8994 
600 0.0001 0.069342 (0.1769    0.3282) -1.8980 

5987 0.00001 0.069400 (0.1769    0.3280) -1.8974 
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