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Abstract: A discrimination method is proposed in which a class region is taken as a set of 
quasi-convex hulls. This comparing with a subclass method (Kudo and Shimbo, 1989) which 
approximates a class region by a hyper-rectangles in such a way that a hyper-rectangle in-
cludes training samples in the class maximally and excludes those of other classes. The ex-
perimental results show the effectiveness of the proposed method. 
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ntroduction 
Classifiers can be evaluated according to 

their description capability of discrimina-
tion boundaries. Usually, a classifier de-
termines its discrimination boundary on 
the basis of a small number of training 
samples.  
When a true discrimination boundary is 
complicated, classification with poor de-
scription capability, such as linear classi-
fier, cannot sufficiently approximate the 
boundary or even explain the training sam-
ples well. On the other hand, classifiers 
with sufficiently high description capabil-
ity, such as a nearest neighbor classifier, 
can fully  approximate any complicated 
discrimination boundary and explain the 
training samples perfectly. However, such 
classifiers tend to depend too much on 
training samples to explain other unknown 
samples. Thus, a classifier with a medium 
degree of description capability is desir-
able. 
In the following is described the subclass 
method of Kudo and Shimbo and the dis-
crimination method using quasi-convex 
hulls. 
 
The subclass method 
The subclass method proposed by Kudo 
and Shimbo uses a set of hyper-rectangles 
for approximating the true region of a 
class. Let us consider a class, denote a 
training sample belonging to this class by 

+∈ Sx  and denote a training sample be-

longing to other classes by −∈ Sy . It  calls 
x a positive sample and y a negative sam-
ple.  
A sample d

dxxxx R∈= ),...,,( 21  is con-
verted to a binary vector ),...,,( 21 Dbbbb = , 

Dibi ,1)(},1,0{ =∀∈  (D>d) as follows. In 

the ith axis, di ,1=  we determine a se-

quence of p thresholds pjt i
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Using these thresholds, we convert x to b 
of D=2pd bits by: 
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b  and i
jb  is the 

negation of i
jb . Here i

jb  is for determining 

a lower bound in the ith axis and i
jb  is for 

determining an upper bound in the con-
struction of a hyper-rectangle as described 
below. 
A binary vector b is said to be included in 
another binary vector c if icb ii )(, ∀≤ . 
We convert a subset X of S+ to a binary B 
as follows. We convert every positive 
sample Xx ∈  to a binary vector b and 
then merge all bs into B applying the bi-
nary operation “and” ( ∧ ) over all bs. 

I 
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The subclass method finds such a subset 
family  O of S+ of which element X is 
maximal in inclusion relation  and the cor-
responding binary vector B is not included 
in any binary vector c converted from 
some −∈ Sy . We call ),( −+Ω SS  a sub-
class family and each element X a subclass. 
The concrete procedure for finding sub-
classes has been described by Kudo et al. 
(1996). The procedure is an iteration of a 
random selection of positive samples. 
Starting with an empty set, we choose a 
positive sample at random, and we add it 
to the set if addition keeps the exclusive-
ness (it will de defined later) against all the 
negative samples, otherwise we discard it. 
This procedure is repeated until all positive 
samples are examined, and all trails of the 
procedures are repeated.  
In addition, a minimum set of subclasses is 
chosen in such a fashion that it covers all 
positive samples and each subclass of it is 
the largest for at least one positive sample. 

Instead of all subclasses, the minimum set 
of subclasses is used in the experiments. 
Subclass X and its binary expression B are 
connected with an axis-parallel hyper-
rectangle, Rect(X), in which each side of 
this is specified by the position of the first 
bit of 1 in each block consisting of p bits in 
B. These rectangles are on the discrete do-
main: 

},...,,{...},...,,{},...,,{ 21
22

2
2

1
11

2
1
1

d
p

dd
pp ttttttttt ×××

Such a hyper-rectangle Rect(X) includes 
positive samples maximally and excludes 
all negative samples. 
An unknown sample x is assign to a class 
if x is included in at least one hyper-
rectangle Rect(X) of the class. If x is in-
cluded in more than one hyper-rectangle 
belonging to different classes, then the hy-
per-rectangle for which x is located the 
most inside is used for the assignment of x, 
where how deep x (or its binary expression 
b) is located inside of a hyper-rectangle 
Rect(X) (or its binary expression B) is 
measures by: 
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where H(B,b) is the Hamming distance be-
tween B and b. This calculation is done 
only if B is included in b. 
If x is not included in any hyper-rectangle, 
then the nearest hyper-rectangle Rect(X) is 
used for the assignment of x, where the 
nearness is measured by ),( bBBH ∧ . 
When B is included in b, or, equivalently, 
when x is included in Rect(X), then this 
distance becomes zero. 
 
Quasi-convex hulls for subclasses 
A set of hyper-rectangles of the original 
subclass method is insufficient for repre-
senting class regions in some cases. There-
fore, we consider another monotonic ex-
pression of subclasses other than hyper-
rectangles. Here, an expression of a set of 
samples is said to be monotonic when the 
expression always includes the expression 
of its subsets. 

In the subclass method, a hyper-rectangle 
that is the minimum enclosure of some set 
of training samples includes any hyper-
rectangle that is the minimum enclosure of 
its one subset. This is a necessary property 
for finding subclasses efficiently in the 
subclass method (Kudo et al., 1996).  
A convex hull also has monotonicity. If we 
adopt a convex hull for expressing a sub-
class, we can represent rather complicates 
class regions efficiently. That is, the num-
ber of convex hulls needed to approximate 
a class region is less than that of hyper-
rectangles needed to approximate the same 
class region. 
We realize this idea approximately using 
technique of transformation of the domain, 
i.e., by an addition of features. After add-
ing some features, the ordinal procedure of 
the subclass method is applied to the sam-
ples expressed by the extended features. 
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Let’s explain this procedures by taking a 
simple example in a two-dimensional 
Euclidean space (i.e. d=2). A transforma-
tion 

213 sincos xxx ⋅+⋅= θθ  
of the sample (x1, x2) gives a new feature 
x3, which is the projection of the sample 
point to a line l with an angle ? passing 
through the origin. By this transformation, 
the domain is expanded from d=2 of (x1, 
x2) to d=3 of (x1, x2, x3). In addition, by in-
troducing 
 214 sincos xxx ⋅′+⋅′= θθ , 
we can expand the original space of 2 fea-
tures to another space of 4 features of (x1, 
x2, x3, x4). 
We determine the p thresholds on l and l’, 
respectively. Now we can express a sub-
class by a hexagonal shape instead of a 
rectangle. Y increasing the number of dif-
ferent ls, we can approximate a convex 
hull correctly. 
For the case of higher dimensions (i.e. 
d>2) we should consider every possible 
combination of d features. The number 2d-
1 of possible combinations will soon be-
come infeasible even for a small number of 
d. Therefore, for a certain constant n, we 
consider only the combinations of at most 
n features. If n=1, it correspond to the 
original subclass method. The number of 
possible combinations is 
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For each subspace consisting of selected i 
( ni ≤ ) features, we consider several 
straight lines l passing through the origin 
as shown in the two-dimensional case. We, 
furthermore, set up equally spaced p 
thresholds on each l, which determine p 
parallel hyperplanes orthogonal to l. Then 
we expand the domain by the projections 
of points on different ls. By m(i) is denoted 
the number of such ls. 
We can approach subclasses to convex 
hulls as closely as we desire by increasing 
n, m(i) and p. New features are then gener-
ated by the projections to 2i lines with di-

rection vectors )1...,,1(
times

43421
i

±±  and m(i)=2i. 

The length d of a binary vector x becomes 
pCd d ⋅+ )22( 22  for n=2 and 

pCCd dd ⋅++ )222( 3322  for n=3. 
  
Some experiments can be made for artifi-
cial or real data. To calculate the recogni-
tion rate, when the sample set is large 
enough, the whole sample set can be di-
vided into a training set and a test set inde-
pendently. If the sample set is relatively 
small, it can be used a 10-fold cross valida-
tion technique in which the whole sample 
set id divided into 10 almost equal-sized 
subsets randomly, and one subset is used 
for test and the remaining nine subsets for 
training and the average of the recognition 
rates of ten trials is calculated. 
In vowel recognition, which is a speech 
recognition problem, there are five classes 
corresponding to the five vowels: “a”, “e”, 
“i”, “o”, “u”. In total, it was been taken 
from the database ETL-WD-1-1 600 vowel 
samples. All the samples were divided into 
two sets: a training set consisting of 1000 
samples (200 for each vowel), and a test 
set of 5000 samples (1000 for each vowel). 
From 18 features consisting of six sets of a 
peak frequency [Hz], peak bandwidth [Hz] 
and peak power [dB], there were selected 
six features by a feature selection proce-
dure (Kudo and Shimbo, 1993). The rec-
ognition rate with the subclass method was 
86.6% and with the quasi-convex hull 
method was 87.1%. 
In character recognition, the dataset is of 
26 alphabetical handwritten uppercase let-
ters from A to Z from the database ETL3. 
Each character is expressed by 324=19× 18 
bits (1:black pixel, 0:white pixel). The 
training sample set consisted of 2600 char-
acters (100 for each character) and the test 
sample set considered of another 2600 
characters. There were selected 30 princi-
pal features by applying Karhunen-Loeve 
expansion to 81 features of characteristic 
loci as proposed by Glucksman (1969). 
The recognition rate with the subclass 
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method was 97.9% and with the quasi-
convex hull method was 98.5%.  
 
Still now, it is not clear in which cases the 
proposed method is effective more than the 
other methods. In general, this is a difficult 
question. It depends on the problems, i.e. 
the number of training samples, the dimen-
sionality, and the shape of the underlying 
distributions. The approach with quasi-
convex hull is strongly related to the shape 
of the underlying distributions of samples. 
Efficient ways are desired in order to con-
struct a convex hull covering a given sub-
set of the training samples and to find the 
convex hull in which a given sample falls. 
However, it is not still clear whether or not 
the use of true convex hull as subclasses is 
effective more than the proposed approach. 
As discussed above, it depends on the 
shape of the underlying distribution of 
samples as well as number of training 
samples. 

Still, compared with the original method 
using a set of hyper-rectangles, this 
method improved the discrimination rate in 
several experiments. 
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